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Abstract. Machine learning is being embraced by information se-
curity researchers and organizations alike for its potential in detect-
ing attacks that an organization faces, specifically attacks that go
undetected by traditional signature-based intrusion detection sys-
tems. Along with the ability to process large amounts of data, ma-
chine learning brings the potential to detect contextual and collective
anomalies, an essential attribute of an ideal threat detection sys-
tem. Datasets play a vital role in developing machine learning mod-
els that are capable of detecting complex and sophisticated threats
like Advanced Persistent Threats (APT). However, there is currently
no APT-dataset that can be used for modeling and detecting APT
attacks. Characterized by the sophistication involved and the deter-
mined nature of the APT attackers, these threats are not only difficult
to detect but also to model. Generic intrusion datasets have three key
limitations - (1) They capture attack traffic at the external endpoints,
limiting their usefulness in the context of APTs which comprise of
attack vectors within the internal network as well (2) The difference
between normal and anomalous behavior is quiet distinguishable in
these datasets and thus fails to represent the sophisticated attackers’
of APT attacks (3) The data imbalance in existing datasets do not
reflect the real-world settings rendering themselves as a benchmark
for supervised models and falling short of semi-supervised learning.
To address these concerns, in this paper, we propose a dataset DAPT
2020 which consists of attacks that are part of Advanced Persistent
Threats (APT). These attacks (1) are hard to distinguish from nor-
mal traffic flows but investigate the raw feature space and (2) com-
prise of traffic on both public-to-private interface and the internal
(private) network. Due to the existence of severe class imbalance, we
benchmark DAPT 2020 dataset on semi-supervised models and show
that they perform poorly trying to detect attack traffic in the various
stages of an APT.
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1 Introduction

Advanced Persistent Threat (APT) [29] is a form of a cybersecurity threat,
posed by well-funded organizations, often to gain crucial information from
the target organization. APT is defined by a combination of three words,
namely (1) Advanced: APT attackers are advanced in terms of attack tools
expertise, and attack methods. With attack vectors customized to the target,
APT attackers organize the attack into multiple stages. (2) Persistent: APT
attackers are determined to achieve the attack objective. The attack meth-
ods involve the use of evasive techniques to elude security agents deployed
by the network defender. (3) Threat: The threat part of APT comes from
the potential loss of sensitive data or mission-critical components. An APT
attack usually consists of five main phases, (1) Reconnaissance (2) Foothold
Establishment (3) Lateral Movement (4) Data Exfiltration, and (5) Post-
Exfiltration [1].

A vast array of research exists in the area of anomaly detection [11], and
traditional intrusion detection systems as a means of identification of slow
and low attacks such as APT. These encompass methods to detect abnormal
behaviors through the use of rule-based engines [55,28,15], machine learning
algorithms [18], in general, and more recently, deep learning architectures [54]
in particular. These methods focus mostly on detecting anomalies in external
traffic packets, i.e., at the interface of the external and internal network. A
survey of industry professionals conducted by Trend Micro [34] shows only
25.1% of the participants are familiar with APTs and 53.1% consider that
APTs are similar to traditional attack vectors. However, the detection of Ad-
vanced Persistent Threat (APT) that involves the identification of long-term
attack behavior both over the public and private channels is fundamentally
different.

While attackers in the context of APTs leverage tools and techniques sim-
ilar to those used in the external attack vectors, the mode of operation and
the goal of these attacks is different from the traditional single-stage attacks.
Traditional intrusion detection techniques such as pattern/signature match-
ing, machine learning, etc. cannot detect APTs effectively because they are
often designed to detect individual (known) attack patterns or methods as
opposed to a threat that involves several interconnected malicious activities.
Furthermore, performance on individual phases of APTs, as we show based on
results of semi-supervised machine learning models (used in anomaly detec-
tion) is far from being effective (see auc-roc-pr). The stealthiness, adaptability,
and persistence of APTs makes detection and prevention of such threats, by
present methods, quite challenging [34].

Current research seeks to identify anomalous activities based on time se-
ries prediction, and machine learning-based correlation analysis [26] or threat
scores based on a static set of rules, e.g., HOLMES [36]. Given the lack of
APT datasets, these techniques (1) do not consider modeling the aspects of
stealthiness, completeness, and persistence that are paramount in the case of
APTs and (2) can neither identify nor leverage correlations across multiple
phases of an APT. For example, given that a reconnaissance phase is essen-
tial before establishing a foothold, detecting attack traffic at an earlier stage
could be useful in identifying the latter stages of an APT.
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The use of current datasets for APT detection is limiting in the sense
that (a) there is no APT pattern in the datasets. The data used for ma-
chine learning-based APT research works utilize existing datasets such as
CAIDA [46], NSL-KDD [20], consists of individual network attacks (probe,
DoS, User to Root (U2R)), which are all performed simultaneously. (b) The
analysis of recent datasets used for APT detection such as CICIDS 2017 [45]
and CICIDS 2018 [16] shows that the attack vectors are limited to a few cat-
egories of attack - reconnaissance, privilege escalation, etc. In this work, we
created a custom dataset, called the DAPT 2020 (Dataset for APT 2020), by
simulating behavior that mimics APTs on a cloud network for five days. We
also collect and provide data from the initial phase when attack vectors for
APT were not injected into the system, thus providing a baseline for model-
ing benign traffic on the network. On subsequent days, we captured attack
traffic, representative of different phases of APTs by skilled attackers. APT
properties like persistence, and slow & low movement are key characteristics
of our dataset.

The key contributions of this research work are as follows:
– We provide dataset DAPT 2020 that captures the various aspects of

real-world APT attacks. These include (1) attack behavior both at the
interface and inside the network. The threat model used for the creation
of the APT dataset incorporates the four main phases of an APT attack -
reconnaissance, foothold establishment, lateral movement, and data exfil-
tration and (2) the traffic features in DAPT 2020 encodes several latent
characteristics, such as adaptability and stealthiness, of APTs. To the
best of our knowledge, this is the first dataset that captures network
behavior spanning all the stages of an APT.

– We compare and contrast the properties of our dataset to three popular
intrusion detection datasets– the CICIDS 2018 [16], the CICIDS 2017 [45],
and the UNB 2015 [37] dataset. We highlight the missing aspects of the
current datasets and show that our dataset fills the gaps. Further, we
propose the new task of identifying a multi-step attack as opposed to
classifying one-off anomalies. We believe that the use of the proposed
dataset in the future will help to set new frontiers for developing ML
models for real-world cybersecurity scenarios.

– Given the data imbalance in cyber attack datasets, where attack traffic
is significantly less than the benign traffic data, we consider the use of
state-of-the-art semi-supervised approaches for constructing a representa-
tion of the legitimate network behavior and then using it for identifying
anomalies. We show that, across the various stages of an APT, these
models are hardly effective in detecting attack traffic.

The rest of the paper has been organized as follows. We discuss the key
characteristics of current datasets and machine learning models used in APT
research in section 2. The design of our dataset DAPT 2020, data collection
methodology, and semi-supervised machine learning models used for bench-
marking different phases of APT have been discussed in section 3. In sec-
tion 4, we compare the performance of machine learning models on DAPT
2020, and existing datasets -CICIDS 2017 [45], CICIDS 2018 [16], and UNB
2015 [37]. We discuss the problem associated with the generalizability of ex-
isting datasets for APT detection and the need for better machine learning
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models in section 5. Finally, we conclude the paper in section 6 and provide
directions for future research.

2 Related Work

Most of the current research focuses on detecting and mitigating the network
intrusion based on pattern matching, signature-based, and anomaly-based
IDSs. However, these IDSs fail to detect attack variants, that use the system
vulnerabilities, before they damage the system. Although there has been some
research done on APT attacks, most of them either describe and analyze
the APT attacks that were disclosed such as Stuxnet [12], Duqu [7] and
Flame [6]. Research works [44,14] consider APT attacks as a two-player game
between attacker and defender. These studies do not discuss solutions for the
automatic detection of APTs [31]. Many works that have been surveyed in
[48,31] use the information correlation from various sources such as host-
based events and network-based events to generate the evidence graphs. The
research works are however limited by the type of attack vectors present in
the network traffic.

2.1 Analysis on existing datasets

Table (1) Analysis of phases of APT attack covered by attack vectors of
existing works involving APT, network intrusion, and anomaly detection in
cybersecurity. The table compares attack phases covered by datasets UNB-
15 [37], CICIDS 2017 [45], NSL-KDD [20], Mawi [25], ISCX [46], DARPA [17],
HERITRIX [53], and DAPT 2020 (our dataset).

```````````APT Phase
Dataset

UNB-15 CICIDS NSL-KDD Mawi ISCX DARPA HERITRIX DAPT 2020

Normal Traffic X X X X X X X X
Reconnaissance X X X X X X
Foothold Establishment X X X X X X X
Lateral Movement X
Data Exfiltration X

Our analysis considered the datasets involving security intrusions and
anomaly detection. For instance, Pang et. al. [40] utilized deep anomaly de-
tection based on deviation networks, and Moustafa et. al. [37] used UNSW-
NB15 intrusion detection dataset. We considered different phases of the APT
attack as measurement metrics. As can be seen in the Table 1, DARPA [17]
only covers three phases of APT attack. None of the existing datasets cover
data exfiltration, which is essential for the successful completion of an APT
attack. Second, we analyzed the attack vectors utilized by different datasets,
as described in the Table 2. The recent datasets such as UNB-15 lack at-
tack vectors such as SQL Injection and Account Bruteforce. The datasets
currently used for anomaly detection or machine learning-based research,
targeting signature-based attacks or APT scenarios, lack a comprehensive
set of attacks used for APT.
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Table (2) Comparison between attack vectors of each dataset in terms of
different attack vectors that is involved in APT attack. The table compares
existance of every attack vectors by datasets UNB-15 [37], CICIDS 2018 [16]
CICIDS 2017 [45], NSL-KDD [20], MAWI [25], ISCX [46], DARPA [17], HER-
ITRIX [53], and DAPT 2020 (our dataset).

XXXXXXXXXAttack
Dataset

UNB-15 CICIDS 2018 CICIDS 2017 NSL-KDD MAWI ISCX DARPA HERITRIX DAPT 2020

Network Scan X X X X X X X X
Web Vulnerability Scan X X X
Account bruteforce X X X X X X X
SQL injection X X X X X
Malware Download X X X
Backdoor X X X X
Command Injection X X X X X X
DoS X X X X X X X X
CSRF X X X X
Privilege escalation X X X X X

2.2 Anomaly Detection and Machine Learning based APT
Detection

Machine learning has been found and proven by many researchers as one of
the promising solutions towards detecting APT attacks. Qu et. al. [41] have
proposed an autoencoder model, with the gated-recurrent unit (GRU) as the
basic unit, trained in an unsupervised approach towards detecting anomalies
in web log data. They compare the accuracy of their model with Long Short
Term Memory (LSTM) and Support Vector Machine (SVM) models. They
used a clustering approach to reduce the feature space before giving it to the
autoencoder. Bohara et. al. in [8] presented an unsupervised clustering ap-
proach on combined network and host logs to find any malicious activity. They
claimed their approach can detect network scan attacks, flooding attacks, and
the presence of malware on a host. Both these solutions embraced unsuper-
vised machine learning approaches and are susceptible to high false positives
and false negatives. Further, Bohara et. al. [8] uses a clustering approach
that is affected by the initial seed and number of clusters. Du et. al. [22]
proposed a DeepLog framework for anomaly detection based on system log
where LSTM was utilized to derive a model trained on normal patterns with
the ability to detect abnormal activities of DDoS attacks. Kumar et al. [30]
proposed a framework to detect security intrusions using a hybrid approach
of rules and machine learning techniques. Marchetti et. al. [32] proposed
a supervised statistical approach based on network traffic logs and access
information to detect APT activities after establishing foothold to exfiltra-
tion attempts including lateral movement and maintaining access. Siddiqui
et. al. [47] have used K-Nearest Neighbor (KNN) machine-learning algorithm
to detect the activities about the lateral movement and exfiltration stages of
an APT attack. Cappers et. al. in [10] proposed a semi-supervised machine
learning approach to detect APT activities from establishing a foothold stage
to data ex-filtration stage by contextual analysis of network traffic alerts.
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Fig. (1) System set used for construction of DAPT 2020 dataset. The at-
tacker can access only public services exposed via firewall. Log Server (ELK
Cluster) is used for collection of network and host logs.

3 DAPT 2020 Dataset Design

A key component lacking in current APT research is an APT dataset. A
primary reason for this shortcoming is the legitimate skepticism amongst
corporate organizations to share network attack data as it may reveal im-
portant aspects of the company. Further, the fear of disclosing personally
identifiable information (PIO), and breaching the customer confidentiality
agreement prevents companies from sharing this data. Hence, we try to con-
struct an artificial dataset with characteristics of APT behavior as DAPT
2020.

In this section, we first provide an overview of the system-setup for facil-
itating data-collection. We then describe the data-collection process, giving
an overview of the timeline and highlight the tools used for data-collection.
Finally, we discuss state-of-the-art techniques that can be leveraged to dis-
tinguish between benign and malicious traffic.

3.1 System Setup

We utilized VMWare ESXi physical servers to host the virtual machines
(VMs) with different services typical of an enterprise cloud network. As can
be seen in the Figure 1, the Public VM comprised vulnerable services such
as mutillidae [39], Damn Vulnerable Web Application (DVWA) [23], Metas-
ploitable [43], and BadStore [51]. We utilized Snort, Network-based Intrusion
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Table (3) Table with details on data collection on a multi-tenant cloud
system with known and unknown vulnerabilities
Day Activity Tools Used Details

Day 1, 8:00 AM-6:00
PM

Normal Traffic ping, dig, GET, POST, curl, brows-
ing, files upload, download

Baseline normal traffic based on user
activities.

Day 2, 8:00 AM-6:00
PM

Reconnaissance nmap, webscarab, sqlmap, dirbuster,
nikto, burpsuite, application account
discovery tools

Reconnaissance on public network,
identification of vulnerabilities, direc-
tory structure, weak authentication,
and authorization.

Day 3, 8:00 AM-6:00
PM

Foothold Estab-
lishment

PHP reverse shell, netcat, SQL vul-
nerability exploitation (sqlmap), XSS
exploitation, authentication bypass,
metasploitable

PHP reverse shell via DVWA, file up-
load, adding of malicious users was
performed on badstore.

Day 4, 8:00 AM-6:00
PM

Lateral Move-
ment

Nmap scan on local network, vsftpd
2.3.4 vulnerability, weak ssh authen-
tication, mysql script for CVE-2012-
2122, metasploit

Exploration of internal network from
compromised VMs (Public VM), and
obtaining foothold on critical local
systems.

Day 5, 8:00 AM-6:00
PM

Data Exfiltration Data exfiltration to C&C, SMB vul-
nerability CVE-2017-7494 used to ob-
tain elevated privileges, Google Drive,
PyExfil, ftp, scp

FTP put method from local machine
to remote server, wput to remote loca-
tion using anonymous user, scp large
files to remote server, web based up-
loads to Google Drive.

Detection System (NIDS) [42] for checking the malicious traffic signatures.
Each service was hosted as a separate Docker [33] container. The private VM
was used to host services such as Samba, Wordpress website, FTP, MySQL,
nexus (repository management). The private and public VMs were connected
over the private network. Additionally, each VM had a packet and log cap-
ture feature. The ELK stack [13] based log server was used for log storage
and filtering. The network and host logs were periodically shipped to the Log
Server using filebeat agent as shown in Figure 1.

3.2 Data Collection

To mimic normal traffic seen on read-world cyber systems, a group of users
was provided user and (some with) administrative credentials, for accessing
public and private services of the network. They performed routine business
operations throughout the week. For instance, admin performed some updates
to a WordPress website, organized files, folders, users. On Monday, we ensured
that no attack traffic was present on the network to generate a baseline for
normal traffic. Then, as highlighted in Table 3, various attack methods were
employed by our internal Red Team (team of experienced cyber-attackers).
They performed a chain of attacks that mimic real-world APT attacks similar
to the ones described by Alshamrani et. al [1]. On Tuesday, the Red Team
attempted exploration (e.g. scanning and fingerprinting) of software present
on public services. The team exploited vulnerabilities present on public ser-
vices. On Wednesday the team used attack scripts and known attack tools
such as metasploitable to establish a foothold and gain elevated privileges on
the services present on the public network. In the next phase of the attack
on Thursday, the Red Team employed lateral movement to exploit critical
services in the network such as SMB, and FTP. Finally, the team used data
exfiltration methods to send the data to external google drives, and FTP
server on Friday. This completed the APT attack. Note, that an actual APT
attack takes place over a longer duration, but the attack phases are quite
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similar to the experimental analysis performed by our internal team. A de-
tailed description of attack tools used and findings during each phase of the
attack are present on our public Gitlab repository [38].

Table (4) Comparison of attack methods employed in DAPT 2020 dataset
against methods employed by real-world APT attacks - APT41 [21], Target
APT Breach [52] and RSA SecureID Attack [49]

APT Phases DAPT 2020 APT41 Target Breach RSA SecureID

Reconnaissance
Network Scan
Application Scan
Account Bruteforce X

Establish Foothold

CSRF X
SQL Injection X X
Malware Download X
Backdoor X X
Reverse Shell X X
Command Injection

Lateral Movement

Internal Scanning X X
Account Discovery X
Password Dumping X X X
Credential Theft X X X
Creation of user accounts X
Privelege Escalation X X

Data Exfiltration Data Theft X X X

The normal users (students with basic knowledge of website maintenance
and access), used shopping interface to checkout items, browse different op-
tions, create posts on the website, add comments on particular items, etc.
The normal user operations continued over next few days. Attackers (ad-
vanced penetration testers) were instructed to be as stealthy as possible and
perform attacks in a fashion that prevents any alarms triggered by security
tools. The attackers were given access and used tools, techniques, and pro-
cedures (TTPs) similar to state of the art APT attacks to simulate APT
attack. The data was collected from all the network interfaces in the form of
(pcap) files, as well as logs from each host.
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In particular, the host logs we collected were as follows:

– Log of system events (Syslog)
– MySQL access log
– Auditd host IDS logs
– Apache Access Logs
– Authentication Logs
– Logs from services - wordpress, docker, samba, ftp
– DNS logs

Constructing a dataset that represents real-world APT attacks is crucial
to the success of the dataset and the models generated using that dataset. Our
dataset, DAPT 2020, has been constructed by studying different APT attack
groups and their methods. Table 4 compares the attack methods employed for
constructing our dataset, DAPT 2020, with the attack methods of employed
in real-world APT attacks.

3.3 Semi-Supervised Models for APT Detection

Understanding the normal behavior of systems within a network plays a cru-
cial role in defending against APTs [1]. By developing a baseline for the
normal behavior of a system, any deviation from this baseline, indicative of
abnormal behavior, can be effectively identified. Semi-supervised approaches
prevalent in anomaly detection leverage this idea to distinguish between nor-
mal and attack traffic at test time [11,9]. An advantage of using such semi-
supervised techniques is that they are robust to the issue of data imbalance
in network-traffic datasets. In real-world settings, which motivate the con-
struction of such data-sets, the number of attack packets is considerably less
than the number of normal traffic packets. For example, the proportion of
users doing regular activities on a website like Google or Amazon or Face-
book vs. the users trying to exploit it, is quite less. According to a study by
F-Secure [5], 22% of companies did not detect a single attack in 2018 over
12 months, 20% of respondents detected only one type of attack over that
period, whereas 31% companies reported 2-5 attacks. Although data to learn
normal behavior is abundant, designing a full-fledged supervised classifier
that can detect anomalies well, is quite challenging.

Our dataset consists of traffic data on an interconnected network of sys-
tems and is rich in contextual information. Regardless of the day on which
the attacks are executed, the amount of attack traffic is a small fraction of
the overall data. Thus, it makes sense for us to use semi-supervised learning
approaches discussed in the literature. We will now discuss a few of these
machine learning models that act as a benchmark for our proposed dataset
and also the existing models which are considered later in our experiments.

– One-Class Support Vector Machines (1-SVM) are known to be
particularly effective in scenarios where there is a large amount of normal
traffic and a small fraction of anomalous traffic data [24,35]. The idea is
to train the model on the labeled examples of the class that has more
data. In our case, we trained the 1-SVM model on the abundant normal
network traffic data. We then, at test time, using a pre-defined threshold,
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decide whether a reconstruction error is large enough to classify it as an
anomaly.

– Stacked Auto Encoder (SAE) - Auto-encoders are a specific kind
of feed-forward neural network [50] that are meant to find a compact
latent-space representation of the input which can be leveraged for recon-
struction. Autoencoders have one hidden layer and compression occurs
between the input and hidden layer while reconstruction occurs between
the hidden and the output layer. In Stacked Auto-encoders, the compres-
sion function followed by the reconstruction is done with a deep neural
network as opposed to a single non-linear layer. During training, the out-
put of an SAE is forced to mimic the input; thus, the loss function seeks to
minimize the distance between the original input and the reconstructed
output. We first train an SAE on normal traffic data, followed by testing
on both normal and anomalous data. The expectation is that although
SAE can accurately reconstruct the normal data, it fails to do so effec-
tively for the abnormal data and has higher reconstruction error [2]. This
makes it easy for a classifier to detect anomalous network traffic data by
comparing the reconstruction error to a pre-defined threshold.

– Stacked Auto Encoder with Long Short-Term Memory (LSTM-
SAE) - While a regular stacked auto-encoders have been used in many
research works, the SAE is not capable of detecting contextual anoma-
lies, which is of great significance in the context of APTs. This is because
the input layers of an SAE only accept a single network packet as input.
To solve this issue, we use a stacked auto-encoder that uses LSTM cells
instead of hidden layer cells of SAEs. LSTMs, which have been success-
ful in time-series analysis [4]. LSTM allows us to consider data across
multiple time steps. The modified SAE, termed as LSTM-SAE, helps us
to compress network traffic packets in multiple consecutive time-steps
and then, reconstruct it. By using the same mechanism of training on
abundant normal data and testing on both attack and normal data, we
can detect attacks that are executed in parts, i.e. spread across multiple
packets. This provides both a good benchmark for our dataset and it is
a promising first-step for contextual anomaly detection.

4 Evaluation

In this section, we compare the performance of the different models, men-
tioned above, on three existing datasets– the CICIDS 2017 [45], CICIDS
2018 [16], UNB 2015 [37]– and our proposed dataset DAPT 2020. The goal
is to show that similar semi-supervised learning methods, i.e. similar semi-
supervised architectures with similar training hyper-parameters, can detect
anomalies better in the case of existing data-sets in comparison to detecting
anomalies in our dataset DAPT 2020.

The anomaly detection models we have used are based on the Stacked
Auto-Encoder (SAE), the LSTM Stacked Auto-Encoder (LSTM-SAE), and a
single-class Support Vector Machine. The key idea behind using these models
for anomaly detection briefly highlighted in section 3 is to train these models
on the normal traffic data on the network. At test time, given an input, we
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pass it thorough the auto-encoder and check if the normalized reconstruction
error is above a certain threshold. If so, we classify it as an anomalous traffic
packet. Otherwise, we classify it as normal traffic.

A metric to gauge the effectiveness of anomaly detection systems in set-
tings that have class imbalance issues, such as anomaly prediction in the
context of cyber-attacks, is the Precision-Recall (PR) curve as opposed to
more popular measures such as accuracy and Receiver Operating Character-
istics (ROC) [19]. First, given that attack representation is often less than 2%
in the test-set, even a naive classifier that classifies all data to the majority
class will have a 98% accuracy. Further, the difference between algorithms on
a dataset (or between datasets using the same algorithm) is harder to rea-
son about within the 2% scale. Second, although both the ROC and the PR
curve use the Recall (or the True Positive Rate), ROC uses the False Positive
Rate (FPR) in comparison to the PR curve’s Precision. The FPR rate is less
sensitive to changes in the number of false positives (i.e. normal traffic being
classified as attacks) while Precision looks at only the set of samples that
are predicted to be positive. Thus, it provides a much better metric when a
particular class is severely underrepresented in comparison to another class.
A detailed discussion on this topic can be found in [19]. Third, comparing
the performance of an algorithm on different data-sets using accuracy or the
ROC curve becomes quite misleading in our context because of the different
degree to which anomalies are under-represented in the data. For example,
the ratio of attack traffic in the case of brute-force attacks for CICIDS 2018
is ≈ 22% while for UNB 2015 it is ≈ 14%. Hence, the baselines for the two
datasets (i.e., a naive classifier that classifies everything to the majority class
label) will have 75% and 86% accuracy respectively. Hence putting them side
by side on the accuracy table or the AUC of a ROC curve does not help
quantify the effectiveness of an algorithm to classify the data. For complete-
ness, we will discuss the AUC-ROC and AUC-PR data in the subsection 4.4.
We now briefly discuss how the PR-curves were constructed and should be
interpreted.

In our setting, the model outputs a confidence value of p after normalizing
the reconstruction error across all test examples between [0, 1]. When the
reconstruction error is large, the value of p is close to 1. Thus, p indicates
the confidence with which the model predicts an input as an anomaly (i.e.
belongs to class 1). To plot a point in the PR-curve, we first set a threshold
of τ . We then, for each test inputs, find p, and if p < τ we classify it as
normal traffic (and as anomalous traffic otherwise). By doing this for all
test inputs, we can come up with a confusion matrix (that showcases the
True/False Positives/Negatives). Finally, we obtain the Precision and Recall
for the particular τ and plot it on the PR-curve. The ideal classifier should be
able to correctly predict the test label of each input with complete confidence,
i.e. for anomalies, it outputs p = 1, while for normal, it predicts p = 0. Such
a classifier plots the line y = 1 and then stretches from (−1, 1) to the point
(1, frac. of anomalous examples) in the PR curve. On the other hand, a No-
Skill (NS) classifier that outputs p = 1 on all input data can be plotted using
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Fig. (2) Precision-Recall (PR) curves for detecting attacks across the various
stages of an APT for the various datasets using the Stacked Auto-encoder
(SAE).
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Fig. (3) Precision-Recall (PR) curves for detecting attacks across the various
stages of an APT for the various datasets using the Stacked Auto-encoder
with LSTM cells (LSTM-SAE).
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Fig. (4) Precision-Recall (PR) curves for detecting attacks across the vari-
ous stages of an APT for the various datasets using 1-class Support Vector
Machine (1-SVM).

the line,

y = Precison =
TP

TP +NP
=

#(Anomalous Traffic)

#(Dataset)

where #(·) denotes the cardinality. For all our PR-curves that follow
the no-skill classifier’s performance is shown using dotted lines and, in the
legend, indexed using the suffix NS. In the PR-space, a curve that is higher
compared to another curve or closer to the top-right corner of the unit-square
(with corners at (0, 0) and (1, 1)) is considered to represent better anomaly
detection.

As opposed to considering the detection of anomalies as a whole, which is
common in all existing works, we break the anomalies down into the four
stages of APTs– Reconnaissance, Foothold Establishment, Lateral Move-
ment, and Data Exfiltration. This helps us highlight the various characteris-
tics of attacks (data imbalance ratios, lack of data) across the different APT
stages that make the semi-supervised learning task difficult. We are also able
to show that even in the context of existing data, the abundance of attack
data in one-phase helps the accuracy of the overall anomaly detection system,
which may be highly unreliable in another context.

We divide the results of our experiments into three subsections– one for
each of the semi-supervised learning methods. Due to the lack of particular
attack vectors in each of the existing datasets, highlighted in Table 1, UNB
2015, CICIDS 2017, and CICIDS 2018 data-sets are only used to detect attack
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in the Reconnaissance and the Foothold Establishment stages. Each row of
figures represents the PR-curves for a particular anomaly detection model
and are arranged as per the detection result of reconnaissance data on the
left and data-exfiltration on the right. The ordering is the representation of
the way APT attacks progress through the system.

Attack Vector Details. The following attack vectors were selected for bench-
marking models on the different stages present in the DAPT 2020 dataset:

1. Reconnaissance - Web Application Scan, Port Scan, Account Discovery
2. Foothold Establishment - Directory Bruteforce, SQL Injection, Malware

Download
3. Lateral Movement - Port Scan (on a private network), backdoor, SQL

Injection (on a private network)
4. Data Exfiltration - exfiltration to a remote FTP server, Google Drive

upload.

The training set for individual attack stages comprised of all normal traffic
data seen on weekdays when attack vectors belonging to the particular attack
stage was absent. On the other hand, the test set comprised of all the traffic
data– both attack and normal–on days attack vectors indicative of the attack
stage was executed. For example, training data for lateral movement in DAPT
2020 consisted of normal data from Monday, Tuesday, Wednesday, and Friday
(days on which there was no lateral movement), whereas the test set consisted
of normal and attack data from Thursday.

The results are shown in Figure 2, 3, and 4, mostly portray the failure of
the semi-supervised system as being able to detect attack vectors in APT sce-
narios. Further, the data imbalance also makes it hard for supervised learners
to perform well in this context. We sincerely hope that the benchmarking re-
sults act as an encouragement for the research community to propose better
methods that are better at anomaly detection in the context of real-world
APTs.

4.1 Anomaly Detection with SAE

The anomaly detection results using the Stacked Auto-Encoder (SAE) are
shown in Figure 2. As can be seen, the classifier performs satisfactorily in
only two settings– (1) detecting reconnaissance attacks on the CICIDS 2018
and (2) detecting foothold establishment attacks in our DAPT 2020 dataset.
Beyond these cases, the AUC-PR of the classifiers, as shown in Table 5 is
highly unsatisfactory and often as bad as the no-skill classifier. We do not
compare the results for different datasets across the various stages of the
APT.

Reconnaissance The anomaly detection on CICIDS 2018, for which the
no-skill classifier has a precision value of 0.23, corresponding to the fraction
of anomalies, is far better than on any of the other datasets with the highest
precision value of 0.87 for some threshold. For the other datasets, performance
on our DAPT 2020 and the UNB 2015 dataset do not differ significantly.
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This is because the baseline of the no-skill classifier is higher in our case
as opposed to UNB 2015 and thus, similar improvements produce the PR
curves plotted in Figure 2(a). Performance on the CICIDS 2017 is the worst
with the maximum precision value reaching to barely 0.1. Not surprisingly,
the AUC-PR for the CICIDS 2017, shown in Table 5, is the worst for this
setting.

Foothold Establishment The fraction of attack data in the context of
Foothold Establishment is significantly less in the existing datasets with only
a section of the brute force and sparse SQL Injection attack vectors in the
haystack of normal data. In our case, nearly 50% of the traffic consists of
attacks that try to gain a foothold in the network. The performance of SAE
in the context of our dataset dominates the performance on other datasets by
a significant margin. Further, the scanty traffic in the other datasets is not
easily distinguishable from the normal data, resulting in the SAE behaving
as bad as a no-skill classifier in this setting.

Lateral Movement and Data Ex-filtration The y-scale of the graph in
this setting ranges show activity between [0, 0.15] instead of the usual [0, 1]
scale in the context of other attacks. The plot acts as proof to show that attack
data representing lateral movement exists in the dataset. The performance of
the SAE is extremely poor, reaching a maximum precision of 0.1. As can be
observed, re-scaling the axis is needed for all plots on the detection of lateral
movement and data-ex-filtration data, but the performance of other models
deteriorates even further.

4.2 Anomaly Detection with LSTM-SAE

The anomaly detection results using the LSTM-based Stacked Auto-encoder
(LSTM-SAE) are plotted in Figure 3. The results for LSTM-SAE is only
promising for the CICIDS 2017 and the CICIDS 2018 dataset in the context
of reconnaissance attacks. A more detailed discussion follows.

Reconnaissance An interesting observation, in comparison to the perfor-
mance of SAE on the CICIDS-2017 dataset, is that the performance of LSTM-
SAE shows significant improvement, jumping from a max precision value of
0.1 in the former case to a value of ≈ 0.9 in the latter plot. This is, to
an extent, indicative that there exists contextual information that is the
CICIDS-2018 dataset that can be leveraged by LSTM-SAEs to better de-
tect anomalies. This might result because of a particular pattern that was
used to inject attack data for this dataset. Looking at the performance on the
other datasets, it seems that the addition of contextual information makes
the distinct representation of the attack vectors difficult, making them close
to normal representation and in turn, reducing the effectiveness of anomaly
detection.
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Foothold Establishment In this setting, the LSTM-SAE turns out to be
the worst classifier. It is as bad as using a no-skill classifier for all the datasets
concerned. As can be observed from the data, compared to SAE or 1-SVM,
even with a sufficiently large fraction of attack data, it cannot perform any
better. This gives a clear indication that the use of contextual information
(of up to 3 timesteps) dilutes attack data for our dataset. We discuss this
further when analyzing on the AUC values for the PR curves.

Lateral Movement and Data Ex-filtration The LSTM-SAEs perfor-
mance is worse than that of SAE on the Lateral Movement and Data Ex-
filtration data compared to other stages of the APT attack. This shows that
the distribution of contextualized attack vectors in these stages is almost the
same as that of normal traffic.

4.3 Anomaly Detection with 1-SVM

In Figure 4, we highlight the performance of a one-class Support Vector
Machine on the different data-sets. Other than the case of detecting Foothold
establishment attacks on our dataset DAPT 2020, the 1-SVM performs poorly
in all the cases.

Reconnaissance The learning classifier performs as bad as the no-skill clas-
sifier for all the datasets except CICIDS 2018. In the case of CICIDS 2018, it
performs quite well compared to CICIDS 2017, UNB 2015, and DAPT 2020
dataset. It essentially implies that for the CICIDS 2018 dataset, it essentially
means that the classifier can identify the anomalous traffic correctly. This can
be explained by the fact that a large percent of attack traffic in CICIDS in-
cluded quite observable attempts by the attacker to perform reconnaissance.
The classifier is, however, not able to identify the anomalous events in DAPT
2020 and other datasets, given that the percentage of attack traffic is quite
low.

Foothold establishment The 1-SVM performs the best for detecting at-
tacks in the foothold establishment stage in our dataset going up to a 0.9
on precision value while it performs almost as bad as the no-skill classifiers
for the other datasets. Since foothold establishment is a key stage associated
with any APT attack, this was expected behavior.

Lateral Movement and Data Ex-filtration Similar to the anomaly de-
tection behavior seen in the case of SAE and LSTM-SAE, the PR curves
for the 1-SVM show extremely poor performance for detecting attacks in the
two final stages of APTs. This shows that attacks were quite stealthy and
almost identical to the normal traffic. It is clear that the reliable detection of
these attack phases on an actual APT attack is quite difficult with existing
anomaly detection models.
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Table (5) AUC-ROC and AUC-PR results for machine learning models -
SAE, SAE-LSTM, 1-SVM.

AUC-ROC AUC-PR

Dataset
Reconnaissance Reconnaissance

SAE SAE-LSTM 1-SVM SAE SAE-LSTM 1-SVM

UNB 2015 0.601 0.352 0.489 0.158 0.061 0.079

CICIDS 2017 0.499 0.727 0.66 0.0263 0.173 0.018

CICIDS 2018 0.832 0.799 0.99 0.592 0.457 0.88

DAPT 2020 0.641 0.525 0.54 0.262 0.143 0.15

Dataset
Foothold Establishment Foothold Establishment
SAE SAE-LSTM 1-SVM SAE SAE-LSTM 1-SVM

UNB 2015 0.602 0.09 0.547 0.0280 0.009 0.019

CICIDS 2017 0.365 0.34 0.670 0.000001 0.00001 0.00018

CICIDS 2018 0.674 0.665 0.540 0.0001 0.00001 0.000001

DAPT 2020 0.846 0.386 0.058 0.498 0.323 0.313

Dataset
Lateral Movement Lateral Movement

SAE SAE-LSTM 1-SVM SAE SAE-LSTM 1-SVM

UNB 2015 NA NA NA NA NA NA

CICIDS 2017 NA NA NA NA NA NA

CICIDS 2018 NA NA NA NA NA NA

DAPT 2020 0.634 0.28 0.25 0.0136 0.0006 0.0006

Dataset
Data Exfiltration Data Exfiltration

SAE SAE-LSTM 1-SVM SAE SAE-LSTM 1-SVM

UNB 2015 NA NA NA NA NA NA

CICIDS 2017 NA NA NA NA NA NA

CICIDS 2018 NA NA NA NA NA NA

DAPT 2020 0.685 0.386 0.298 0.0034 0.0027 0.0015

4.4 Analysis of Performance on AUC

Stacked autoencoder performed well on reconnaissance, and foothold estab-
lishment phase, whereas 1-SVM performed better on lateral movement, and
data-exfiltration phase. LSTM-SAE performed quite poorly on all phases of
APT. AUC-PR values are quite low suggesting anomalies to be sparsely dis-
tributed.

We enumerate the Area Under Curve - Receiver Operating Characteristics
(AUC-ROC), and AUC Precision-Recall (AUC-PR) values of the classifiers
on the dataset UNB 2015, CICIDS 2017, CICIDS 2018, and DAPT 2020 in
Table 5. AUC-ROC summarizes the ROC curves of true positives against
false positives, while AUC-PR is a summarizes the curve of precision against
the recall. If the AUC-ROC value is quite high (close to 1), it implies good
performance, whereas AUC-ROC value close to 0.5 means a random ranking
of the objects. The choice of performance metric AUC-ROC and AUC-PR
depends on the goal of the anomaly detection method. AUC-ROC is used be-
cause of good interpretability, however, if the anomaly detection mechanism
is sensitive to the performance on the positive class as opposed to negative
class, AUC-PR is a good performance metric for anomaly detection. If the
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anomalies are distributed unevenly in the dataset, the value of AUC-PR is
generally low.

Reconnaissance The SAE model performed quite well on most of the
datasets in the reconnaissance phase, achieving 0.601 AUC-ROC value, in
case of UNB 2015, 0.832 in case of CICIDS 2018, and 0.641 in the case of
DAPT 2020 dataset. Surprisingly, the SAE-LSTM showcased better AUC
value compared to SAE, and 1-SVM on CICIDS dataset. The AUC-PR val-
ues were consistently low for all the algorithms in the reconnaissance phase.
This means the attack distribution was quite sparse during the reconnaissance
phase and thereby, difficult to detect.

Foothold establishment The SAE showed good performance in the case of
DAPT 2020 for foothold establishment (0.846). These results are on the lines
of PR curves observed in the previous section for the foothold establishment
stage. The AUC-PR values for foothold establishment are higher for DAPT
2020 dataset compared to other datasets, since attack traffic was bit higher
compared to other datasets, 0.323 for LSTM-SAE, and 0.313 for 1-SVM.

Lateral Movement and Data Ex-filtration The foothold establishment
and lateral movement phases were missing on the existing datasets. The dif-
ferent machine learning models when evaluated on DAPT 2020 consistently
showed poor performance, for both lateral movement and data exfiltration.
Moreover, the consistently low values of all unsupervised learning algorithms
on these phases of APT show that the attack vectors employed in our dataset
are highly stealthy and difficult to detect using existing classifiers.

5 Discussion

As already highlighted, the availability of data on APT is difficult because of
(1) privacy concerns pertaining to an organization and its customers and (2)
spending effort in creating a data-set like DAPT 2020 is both time-consuming
and expensive. Given that we now propose the DAPT 2020 dataset, it is nat-
ural to consider the use of data-augmentation techniques prevalent in the
machine learning community [3]. However, there are two concerns in using
data-augmentation techniques. First, the current dataset reflects an APT at-
tack with thin lines between normal and abnormal behaviors of the systems
within the network. As a result, ensuring that augmentation of the normal
traffic still represents normal behavior of the systems is quiet challenging.
Second, unlike regular intrusion detection datasets, this dataset represents
an APT attack where in consecutive attack vectors are inter-related. Data
augmentation can potentially affect these dependency relations with the gen-
erated attack data failing to capture the APT attackers’ movement in the
network. Further, GANs are known to exacerbate biases and thus, generated
data may induce mode collapse, repeating a particular patterns present in
the attack data to generate synthetic attack traffic, in turn reducing its rich
diversity [27]. We believe, the effectiveness of data augmentation in regards
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to APT traffic needs to be investigated, and we intend to move in this direc-
tion in near future. We plan to consider GAN based models to identify better
machine learning models in context of APT attacks.

While machine learning models are known to be less effective when test
data is out-of-distribution (OOD), the problem amplifies further in the con-
text of cyber-security. Each system is highly specific to the software it uses,
the inputs (or outputs) it expects (or generates), the traffic patterns seen etc.
Hence, a model trained on a particular dataset might not be as effective when
used in a different context. DAPT 2020 helps bridge this gap and provides
motivation for the development of machine learning technologies suitable for
APT attack detection.

6 Conclusion

Advanced Persistent Threats are one of the most challenging attacks to
defend against. Several machine learning research works have tried to ad-
dress the APT detection problem. They are, however, limited by the attack
vectors, and the attack phases critical for an APT attack. We propose a
new DAPT 2020 dataset, and benchmark existing anomaly detection mod-
els on our dataset. The performance of anomaly detection models in terms
of precision-recall (PR) values, AUC-ROC, and AUC-PR values is consis-
tently low. This shows that reliable detection of APT attacks using existing
machine learning models is very difficult, and more effort needs to be in-
vested towards creating better learning models for APT detection. Further,
a key component that is required for defending against APTs is a correlation
model that correlates the anomalies detected. We believe this DAPT 2020
dataset instigates development of fine correlation models that help detect a
threat in its entirety and not just the individual attack vectors. The code and
dataset for this research work can be found at https://gitlab.thothlab.

org/Advanced-Persistent-Threat/apt-2020/tree/master (along-with a
detailed description of DAPT-20 [38]).
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7. Bencsáth, B., Pék, G., Buttyán, L., Félegyházi, M.: Duqu: Analysis, detec-
tion, and lessons learned. In: ACM European Workshop on System Security
(EuroSec). vol. 2012 (2012)

8. Bohara, A., Thakore, U., Sanders, W.H.: Intrusion detection in enterprise sys-
tems by combining and clustering diverse monitor data. In: Proceedings of the
Symposium and Bootcamp on the Science of Security. pp. 7–16. ACM (2016)

9. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: A semisuper-
vised autoencoder-based approach for anomaly detection in high performance
computing systems. Engineering Applications of Artificial Intelligence 85, 634–
644 (2019)

10. Cappers, B.C., van Wijk, J.J.: Understanding the context of network traffic
alerts. In: Visualization for Cyber Security (VizSec), 2016 IEEE Symposium
on. pp. 1–8. IEEE (2016)

11. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM
computing surveys (CSUR) 41(3), 15 (2009)

12. Chen, T.M., Abu-Nimeh, S.: Lessons from stuxnet. Computer 44(4), 91–93
(2011)

13. Chhajed, S.: Learning ELK Stack. Packt Publishing Ltd (2015)
14. Chowdhary, A., Sengupta, S., Huang, D., Kambhampati, S.: Markov game mod-

eling of moving target defense for strategic detection of threats in cloud net-
works. AAAI Workshop on Artificial Intelligence for Cyber-Security (2018)

15. Chung, C.J., Khatkar, P., Xing, T., Lee, J., Huang, D.: Nice: Network intru-
sion detection and countermeasure selection in virtual network systems. IEEE
transactions on dependable and secure computing 10(4), 198–211 (2013)

16. CSE-CIC-IDS2018: A collaborative project between the communications se-
curity establishment (cse) and the canadian institute for cybersecurity (cic)
(2018), https://www.unb.ca/cic/datasets/ids-2018.html

17. Cunningham, R.K., Lippmann, R.P., Fried, D.J., Garfinkel, S.L., Graf, I.,
Kendall, K.R., Webster, S.E., Wyschogrod, D., Zissman, M.A.: Evaluating in-
trusion detection systems without attacking your friends: The 1998 darpa in-
trusion detection evaluation. Tech. rep., MASSACHUSETTS INST OF TECH
LEXINGTON LINCOLN LAB (1999)

18. DARPA: Darpa scalable network monitoring (snm) program traffic (11/03/2009
to 11/12/2009) (2012). https://doi.org/10.23721/111/1354735

19. Davis, J., Goadrich, M.: The relationship between precision-recall and roc
curves. In: Proceedings of the 23rd international conference on Machine learn-
ing. pp. 233–240 (2006)

20. Dhanabal, L., Shantharajah, S.: A study on nsl-kdd dataset for intrusion de-
tection system based on classification algorithms. International Journal of Ad-
vanced Research in Computer and Communication Engineering 4(6), 446–452
(2015)

21. Dragon, D.: Double dragon: Apt41, a dual espionage and cyber crime
operation. https://content.fireeye.com/apt-41/rpt-apt41, (Accessed on
07/29/2020)

22. Du, M., Li, F., Zheng, G., Srikumar, V.: Deeplog: Anomaly detection and di-
agnosis from system logs through deep learning. In: Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security. pp.
1285–1298. ACM (2017)

https://betanews.com/2019/03/05/attack-traffic-increase/
https://betanews.com/2019/03/05/attack-traffic-increase/
https://www.unb.ca/cic/datasets/ids-2018.html
https://doi.org/10.23721/111/1354735
https://content.fireeye.com/apt-41/rpt-apt41


DAPT 2020– Dataset for Advanced Persistent Threats 21

23. DVWA, U.: Damn vulnerable web application (2020), http://www.dvwa.co.
uk/

24. Emmott, A.F., Das, S., Dietterich, T., Fern, A., Wong, W.K.: Systematic con-
struction of anomaly detection benchmarks from real data. In: Proceedings of
the ACM SIGKDD workshop on outlier detection and description. pp. 16–21
(2013)

25. Fontugne, R., Borgnat, P., Abry, P., Fukuda, K.: Mawilab: combining diverse
anomaly detectors for automated anomaly labeling and performance bench-
marking. In: Proceedings of the 6th International COnference. p. 8. ACM (2010)

26. Ghafir, I., Hammoudeh, M., Prenosil, V., Han, L., Hegarty, R., Rabie, K.,
Aparicio-Navarro, F.J.: Detection of advanced persistent threat using machine-
learning correlation analysis. Future Generation Computer Systems 89, 349–
359 (2018)

27. Jain, N., Olmo, A., Sengupta, S., Manikonda, L., Kambhampati, S.: Imperfect
imaganation: Implications of gans exacerbating biases on facial data augmen-
tation and snapchat selfie lenses. arXiv preprint arXiv:2001.09528 (2020)

28. Kim, H., Kim, J., Kim, I., Chung, T.m.: Behavior-based anomaly detection on
big data (2015)

29. Kissel, R.: Glossary of key information security terms. Diane Publishing (2011)
30. Kumar, R.S.S., Wicker, A., Swann, M.: Practical machine learning for

cloud intrusion detection: Challenges and the way forward. arXiv preprint
arXiv:1709.07095 (2017)

31. Marchetti, M., Pierazzi, F., Colajanni, M., Guido, A.: Analysis of high volumes
of network traffic for advanced persistent threat detection. Computer Networks
109, 127–141 (2016)

32. Marchetti, M., Pierazzi, F., Guido, A., Colajanni, M.: Countering advanced
persistent threats through security intelligence and big data analytics. In: Cyber
Conflict (CyCon), 2016 8th International Conference on. pp. 243–261. IEEE
(2016)

33. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux journal 2014(239), 2 (2014)

34. Micro, T.: Advanced persistent threat awareness (2018), https://www.

trendmicro.it/media/misc/apt-survey-report-en.pdf

35. Microsoft: One-class support vector machine (2019), https:

//docs.microsoft.com/en-us/azure/machine-learning/

studio-module-reference/one-class-support-vector-machine

36. Milajerdi, S.M., Gjomemo, R., Eshete, B., Sekar, R., Venkatakrishnan, V.:
Holmes: real-time apt detection through correlation of suspicious information
flows. arXiv preprint arXiv:1810.01594 (2018)

37. Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intru-
sion detection systems (unsw-nb15 network data set). In: 2015 military commu-
nications and information systems conference (MilCIS). pp. 1–6. IEEE (2015)

38. Myneni, S., Chowdhary, A.: Apt dataset detailed description (March 2020),
https://gitlab.thothlab.org/Advanced-Persistent-Threat/apt-2020/

39. OWASP: Owasp mutillidae 2 project (2020), https://wiki.owasp.org/index.
php/

40. Pang, G., Hengel, A.v.d., Shen, C.: Weakly-supervised deep anomaly detection
with pairwise relation learning. arXiv preprint arXiv:1910.13601 (2019)

41. Qu, Z., Su, L., Wang, X., Zheng, S., Song, X., Song, X.: A unsupervised learning
method of anomaly detection using gru. In: 2018 IEEE International Conference
on Big Data and Smart Computing (BigComp). pp. 685–688. IEEE (2018)

42. Roesch, M., et al.: Snort: Lightweight intrusion detection for networks. In: Lisa.
vol. 99, pp. 229–238 (1999)

http://www.dvwa.co.uk/
http://www.dvwa.co.uk/
https://www.trendmicro.it/media/misc/apt-survey-report-en.pdf
https://www.trendmicro.it/media/misc/apt-survey-report-en.pdf
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/one-class-support-vector-machine
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/one-class-support-vector-machine
https://docs.microsoft.com/en-us/azure/machine-learning/studio-module-reference/one-class-support-vector-machine
https://gitlab.thothlab.org/Advanced-Persistent-Threat/apt-2020/
https://wiki.owasp.org/index.php/
https://wiki.owasp.org/index.php/


22 S. Myneni et al.

43. Security, O.: Metasploitable unleashed (2020), https://www.

offensive-security.com/metasploit-unleashed/requirements/

44. Sengupta, S., Chowdhary, A., Huang, D., Kambhampati, S.: General sum
markov games for strategic detection of advanced persistent threats using mov-
ing target defense in cloud networks. In: International Conference on Decision
and Game Theory for Security. pp. 492–512. Springer (2019)

45. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: A detailed analysis of the ci-
cids2017 data set. In: International Conference on Information Systems Security
and Privacy. pp. 172–188. Springer (2018)

46. Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a
systematic approach to generate benchmark datasets for intrusion detection.
computers & security 31(3), 357–374 (2012)

47. Siddiqui, S., Khan, M.S., Ferens, K., Kinsner, W.: Detecting advanced per-
sistent threats using fractal dimension based machine learning classification.
In: Proceedings of the 2016 ACM on International Workshop on Security And
Privacy Analytics. pp. 64–69. ACM (2016)

48. Singh, S., Sharma, P.K., Moon, S.Y., Moon, D., Park, J.H.: A comprehensive
study on apt attacks and countermeasures for future networks and commu-
nications: challenges and solutions. The Journal of Supercomputing pp. 1–32
(2016)

49. TheRegister: Rsa explains how attackers breached its systems • the regis-
ter. https://www.theregister.com/2011/04/04/rsa_hack_howdunnit/, (Ac-
cessed on 07/29/2020)

50. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked
denoising autoencoders: Learning useful representations in a deep network with
a local denoising criterion. Journal of machine learning research 11(Dec), 3371–
3408 (2010)

51. Vulnhub: Vulnhub badstore (2020), https://www.vulnhub.com/entry/

badstore-123,41/

52. Wagner, R., Fredrikson, M., Garlan, D.: An advanced persistent threat exem-
plar. MONTH (2017)

53. Wang, Y., Cai, W.d., Wei, P.c.: A deep learning approach for detecting mali-
cious javascript code. security and communication networks 9(11), 1520–1534
(2016)

54. Yuan, X.: Phd forum: Deep learning-based real-time malware detection with
multi-stage analysis. In: Smart Computing (SMARTCOMP), 2017 IEEE Inter-
national Conference on. pp. 1–2. IEEE (2017)

55. Zhao, G., Xu, K., Xu, L., Wu, B.: Detecting apt malware infections based on
malicious dns and traffic analysis. IEEE Access 3, 1132–1142 (2015)

https://www.offensive-security.com/metasploit-unleashed/requirements/
https://www.offensive-security.com/metasploit-unleashed/requirements/
https://www.theregister.com/2011/04/04/rsa_hack_howdunnit/
https://www.vulnhub.com/entry/badstore-123,41/
https://www.vulnhub.com/entry/badstore-123,41/


DAPT 2020– Dataset for Advanced Persistent Threats 23

A Appendix

A.1 APT Attack Phases

The detailed description of different APT phases are as follows:

Reconnaissance

– Scan Applications - Nessus, Web Scarab, Burp Suite. Find vulnerabil-
ities such as XSS, XSRF, SQL Injection etc.

– Scan Network - NMap, Portsweep, Mscan, Satan, Ipsweep, Saint. Find
systems’ fingerprints, network architecture information etc. Firewall should
log deny event. If multiple denies are seen against unique destination ports
from the same origin host within a small windows of time, it is safe to
assume that some sort of port scanning activity is taking place.

Establish Foothold

– Download or Install Malware - Scanbox, Backdoor Sogu, PoisonIvy,
KeyLoggers.

– R2L - Guess Password, Ftp Write, Imap, Phf, Multihop, Warezmaster,
Warezclient, SpyXlock, Xsnoop, Snmpguess, Snmpgetattack, Httptunnel,
Sendmail, Named.

– C&C Communication - Send communication to external server that
the malware has been installed. Monitor network traffic originating from a
system to an external server, after a download of a file or similar network
activitiy.

Lateral Movement

– Credential Compromise - Key Loggers, Hash retrieval, LDAP, Metas-
ploit.

– Privilege Escalation (U2R) - Buffer Overflow, Loadmodule, Rootkit,
Perl, Sqlattack, Xterm, PS.

Internal Reconnaissance Same as Reconnaissance above, just from differ-
ent source in search of data. IP range might be probed for port 1433 in case
of enumerating SQL servers. Ports 135-139 are usually probed by attackers
when in search of network shares.

Data Exfiltration Uploading to Google Drive, Dropbox, AWS or any such
cloud. Need to baseline against the normal activity of a system.

Cover Up Deletion of log files, modification of log files etc. Needs host based
intrusion detection agent. OUT OF SCOPE for current research.

A.2 APT Feature Description

We collected the following features from network and host logs. The details
of features extracted extracted from the data collected are present in the
Table 6.
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Table (6) APT20 Feature Description

fl dur Flow duration
tot fw pk Total packets in the forward direction
tot bw pk Total packets in the backward direction
tot l fw pkt Total size of packet in forward direction
fw pkt l max Maximum size of packet in forward direction
fw pkt l min Minimum size of packet in forward direction
fw pkt l avg Average size of packet in forward direction
fw pkt l std Standard deviation size of packet in forward direction
Bw pkt l max Maximum size of packet in backward direction
Bw pkt l min Minimum size of packet in backward direction
Bw pkt l avg Mean size of packet in backward direction
Bw pkt l std Standard deviation size of packet in backward direction
fl byt s Flow byte rate that is number of packets transferred per

second
fl pkt s Flow packets rate that is number of packets transferred

per second
fl iat avg Average time between two flows
fl iat std Standard deviation time two flows
fl iat max Maximum time between two flows
fl iat min Minimum time between two flows
fw iat tot Total time between two packets sent in the forward di-

rection
fw iat avg Mean time between two packets sent in the forward di-

rection
fw iat std Standard deviation time between two packets sent in the

forward direction
fw iat max Maximum time between two packets sent in the forward

direction
fw iat min Minimum time between two packets sent in the forward

direction
bw iat tot Total time between two packets sent in the backward

direction
bw iat avg Mean time between two packets sent in the backward

direction
bw iat std Standard deviation time between two packets sent in the

backward direction
bw iat max Maximum time between two packets sent in the back-

ward direction
bw iat min Minimum time between two packets sent in the back-

ward direction
fw psh flag Number of times the PSH flag was set in packets travel-

ling in the forward direction (0 for UDP)
bw psh flag Number of times the PSH flag was set in packets travel-

ling in the backward direction (0 for UDP)
fw urg flag Number of times the URG flag was set in packets trav-

elling in the forward direction (0 for UDP)
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bw urg flag Number of times the URG flag was set in packets trav-
elling in the backward direction (0 for UDP)

fw hdr len Total bytes used for headers in the forward direction
bw hdr len Total bytes used for headers in the forward direction
fw pkt s Number of forward packets per second
bw pkt s Number of backward packets per second
pkt len min Minimum length of a flow
pkt len max Maximum length of a flow
pkt len avg Mean length of a flow
pkt len std Standard deviation length of a flow
pkt len va Minimum inter-arrival time of packet
fin cnt Number of packets with FIN
syn cnt Number of packets with SYN
rst cnt Number of packets with RST
pst cnt Number of packets with PUSH
ack cnt Number of packets with ACK
urg cnt Number of packets with URG
cwe cnt Number of packets with CWE
ece cnt Number of packets with ECE
down up ratio Download and upload ratio
pkt size avg Average size of packet
fw seg avg Average size observed in the forward direction
bw seg avg Average size observed in the backward direction
fw byt blk avg Average number of bytes bulk rate in the forward direc-

tion
fw pkt blk avg Average number of packets bulk rate in the forward di-

rection
fw blk rate avg Average number of bulk rate in the forward direction
bw byt blk avg Average number of bytes bulk rate in the backward di-

rection
bw pkt blk avg Average number of packets bulk rate in the backward

direction
bw blk rate avg Average number of bulk rate in the backward direction
subfl fw pk The average number of packets in a sub flow in the for-

ward direction
subfl fw byt The average number of bytes in a sub flow in the forward

direction
subfl bw pkt The average number of packets in a sub flow in the back-

ward direction
subfl bw byt The average number of bytes in a sub flow in the back-

ward direction
fw win byt Number of bytes sent in initial window in the forward

direction
bw win byt Number of bytes sent in initial window in the backward

direction
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fw act pk Number of packets with at least 1 byte of TCP data
payload in the forward direction

fw seg min Minimum segment size observed in the forward direction
atv avg Mean time a flow was active before becoming idle
atv std Standard deviation time a flow was active before becom-

ing idle
atv max Maximum time a flow was active before becoming idle
atv min Minimum time a flow was active before becoming idle
idl avg Mean time a flow was idle before becoming active
idl std Standard deviation time a flow was idle before becoming

active
idl max Maximum time a flow was idle before becoming active
idl min Minimum time a flow was idle before becoming active
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