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Abstract
Determined cyber adversaries often strategize their

attacks by carefully selecting high-value target machines
that host insecure (e.g., unpatched) legacy software. In this
paper, we propose a moving-target approach to thwart and
countersurveil such adversaries, wherein live (non-decoy)
enterprise software services are automatically modified to
deceptively emulate vulnerable legacy versions that entice
attackers. A game-theoretic framework chooses which
emulated software stacks, versions, configurations, and
vulnerabilities yield the best defensive payoffs and most
useful threat data given a specific attack model. The results
show that effective movement strategies can be computed to
account for pragmatic aspects of deception, such as the
utility of various intelligence-gathering actions, impact of
vulnerabilities, performance costs of patch deployment,
complexity of exploits, and attacker profile.

1. Introduction
Software vulnerabilities are among the top targets of

cyber criminals, corresponding to 25% of all exploitable
attack vectors [1]. The problem is exacerbated by the ready
availability of exploits and detailed bug reports, which
enable attackers to automate low-risk reconnaissance steps
and probe victim networks for these software flaws. When
a vulnerable target is identified, the attacker launches an
exploit to the unpatched server, such as one that hijacks
the victim software’s control-flow, causing it to perform
malicious actions on behalf of the attacker. The exploit
payload thereby obtains access to the environment and
deploys other malicious tools.

To anticipate and foil these directed cyber attacks,
deceptive honey-patching [2] has been proposed as a
language-based methodology to patch software security
vulnerabilities in such a way that future attempted exploits
of the patched vulnerability appear successful to attackers
even when they are not. This masks patching lapses,
impeding attackers from discerning which systems are
genuinely vulnerable and which are actually patched
systems masquerading as unpatched systems. Detected
attacks are surreptitiously redirected to isolated, unpatched
decoy environments with the full interactive power of the
targeted victim server. The decoy environments disinform

adversaries with honey-data and aggressively monitor
adversarial behavior.

While these capabilities offer potentially promising
defense layers against determined adversaries skilled at
evading traditional honeypots, the question of which vulner-
abilities to deceptively emulate or how to automatically
evolve the deceptive attack surface with evolving adversar-
ial TTPs has remained relatively unstudied. For example,
Chameleon [3], Honeyd scripts [4], and Cloxy [5] de-
ployments all presently rely upon human selection of
vulnerabilities and versions, which is sub-optimal for wag-
ing long-term deceptive campaigns, because it can result
in deceptions becoming predictable and stale, potentially
affording attackers the opportunity and time to fingerprint
and circumvent deceptive applications. As new vulnerabili-
ties emerge, attack activity change [6, 7, 8, 9], potentially
rendering old deceptions less enticing to cyber criminals.

To overcome this disadvantage, this paper proposes
software deception steering as a new moving target defense
technique for counterreconnaissance and attack intelligence
gathering, which leverages application-level, deceptive
attack responses through honey-patching to continuously
adapt the deception surface of the target application. Toward
this end, we designed and implemented QUICKSAND, an
adaptive software version emulation architecture, in which
the set of fake vulnerabilities is dynamically re-selected
to increase the likelihood of deceiving and entrapping
attackers. Based on vulnerability context (e.g., vulnerability
risk scores, attack history), QUICKSAND chooses to emulate
a particular software version with a particular set of (fake)
vulnerabilities. This moving deception surface undermines
the attacker’s ability to identify and detect deceptions, and
increases the likelihood of gathering high-quality threat data
reflective of advanced attacks by skilled adversaries (rather
than merely well-known attacks by unskilled adversaries,
for which threat data is less useful).

Our work includes the following contributions:
• We propose a deception-based moving target architec-

ture to dynamically honey-patch software, rendering
it less predictable and more robust against attackers’
anti-deception efforts.

• We model the software emulation process as a
Bayesian Stackelberg Game [10, 11] to compute



effective movement strategies that account for prag-
matic aspects of deception, including the utility of
intelligence-gathering actions, impact of vulnera-
bilities, cost of patch deployment, complexity of
exploits, and attacker model.

• We propose, design, and implement an effective
version-control strategy to facilitate patch re-selection
and automatically resolve source-level conflicts
between patches.

2. Overview
First, we outline or new moving deception maneuver,

followed by primary challenges and corresponding design
decisions for software deception steering. Finally, we
summarize background literature and our threat model.

2.1. Software Deception Steering
We define deception steering as the use of cyberdecep-

tion for altering the apparent attack surface of software
systems towards configurations that yield better defender
payoffs. Specifically, leveraging vulnerability metadata and
intrusion alerts collected at the network perimeter, QUICK-
SAND dynamically adapts the target application to emulate a
particular software version, with a particular set of honey-
patched vulnerabilities (and all other known vulnerabilities
regular-patched), a particular set of modules enabled, and a
particular guest OS version in decoys.

The scope of adaptation can go beyond the application
and host boundaries; for instance, perimeter defenses
(if any) can also be reconfigured to intentionally allow
previously filtered attacks to reach the honey-patch. This
reconfiguration need not happen live; it can be re-selected
during nightly reboots, for example. The selections are
based on which configuration is likely to gather the most
useful threat data given the history of past attacks.

2.2. Design Principles
Software deception steering requires a patch manage-

ment framework that facilitates software version composi-
tion and minimizes source code-level conflicts between
patches. QUICKSAND defines honey-patches as modifi-
cations to their corresponding regular, vendor-supplied
patches. For instance, Figure 1 exemplifies a vulnerability
causing the GNU Bash shell to improperly parse function
definitions in the values of environment variables [12].
Prior to the patch, the vulnerable shell interpreter allowed
remote attackers to execute arbitrary code or cause a de-
nial of service on the victim’s machine. The patch, named
CVE-2014-6277 in this example, fixes the vulnerability by
extending the check for what constitutes a legal function
identifier to include some extra sanity checks (Lines 2–3 in
the patch code, depicted in diff style). The honey-patch
CVE-2014-6277-hp modifies the original patch to fork
attacks onto decoy environments while impersonating the
unpatched code (Lines 8–9 in the honey-patch code) to
deceive adversaries. Encoding honey-patches in this manner

naturally models the dependency among honey-patches,
their corresponding patches, and unpatched source code. It
also makes patch/honey-patch pairs conflict-free by con-
struction, greatly simplifying the task of composing new
versions of the target application.

Patch dependencies (denoted by dashed arrows between
patches) are calculated based on how patches affect source
code rather than by the order in which they are introduced
into the code base. This removes the temporal constraint
among patches and enables the selection of patch sets based
on their semantic dependencies. This patch dependency
model is implemented in the Darcs version control system
[13], which our software version-emulation architecture
leverages to select consistent, conflict-free application
versions for deployment.

2.3. Background
Honey-patching. Prior work has observed that many
vendor-released software security patches can be honeyed
by replacing their attack-rejection responses with code that
instead maintains and forks the attacker’s connection to a
confined, unpatched decoy [2, 14]. Such honey-patching
retains the most complex part of the vendor patch (the
security check) and replaces the remediation code with some
boilerplate forking code [15], making it easy to implement
upon release of new security patches.

This embedded deception offers some important advan-
tages over conventional honeypots. Most significantly, it
observes attacks against the defender’s genuine assets, not
merely those directed at fake assets that offer no legitimate
services. It can therefore capture data from sophisticated
attackers who monitor network traffic to identify service-
providing assets before launching attacks, who customize
their attacks to the particular activities of targeted victims
(differentiating genuine servers from dedicated honey-
pots), and who may have already successfully infiltrated the
victim’s network before their attacks become detected.

Threat Model. Attackers in our model submit malicious
inputs intended to probe and exploit vulnerabilities on
victim networked services. We assume most attackers rely
upon a mix of vulnerabilities, only some of which are
known to defenders. For example, a skilled attacker might
first try to exploit known vulnerabilities, only escalating
to more potent, defender-unknown vulnerabilities (e.g.,
0-days) once he becomes confident that his activities are
not being observed. Attack payloads might be completely
unique and therefore unknown to defenders. Such payloads
might elude network-level monitors, and are therefore best
detected at the software level at the point of exploitation.
We also assume that attackers might use one payload for
reconnaissance but reserve another for the final attack.
Misleading the attacker into launching the final attack is
useful for defenders to discover the final attack payload,
which can divulge attacker TTPs and goals not discernible
from the reconnaissance payload alone.

While our general approach is potentially applicable to
arbitrary networked software, in this work we focus on



honey-patch for CVE-2014-6277

1      ...

2      if (legal_identifier (name))

3      …

4      else 

5      {

6          last_command_exit_value = 1;

7          report_error (…);

8      }

9

10

1      ...

2  - if (legal_identifier (name))

3  + if (absolute_program (tname) && (posixly_correct == 0 || legal_identifier (tname)))

4      …

5      else 

6      {

7         last_command_exit_value = 1;

8         report_error (…);

9      }

10

1      ...

2      if (absolute_program (tname) && (posixly_correct == 0 || legal_identifier (tname)))

3      …

4      else 

5      {

6         last_command_exit_value = 1;

7   -     report_error (…);

8   +    hp_fork();

9   +    hp_skip(report_error (…));

10    }

CVE-2014-6277
patch for CVE-2014-6277

CVE-2014-6277-hp

clones attack session to decoy environmentclones attack session to decoy environment

Figure 1: Patch and honey-patch for CVE-2014-6277 (abbreviated), and dependencies between them denoted by dashed arrows
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Figure 2: An overview of QUICKSAND.

protecting services possessing strictly user-level privileges,
and that must therefore leverage software bugs and kernel-
supplied services to perform malicious actions, such as
corrupting the file system or accessing other users’ memory
to access confidential data. QUICKSAND therefore instru-
ments user-level applications with deceptive defensive code
without modifying the OS or VM.

3. System Design
Figure 2 depicts QUICKSAND’s architecture. The patch

conflict solver generates conflict-free candidate patch sets for
version emulation. An analysis and correlation component
ingests and maintains vulnerability metadata from the
National Vulnerability Database (NVD), parses intrusion
alerts, and correlates them with intrusion signature metadata.
The patch set selector module leverages a game-theoretic
engine to select which version of the software should
be deployed based on the aggregated data. The version
deployment module then uses this information to synthesize
and deploy a new version of the application, including the
specification of the target modules and environment. This
process executes repeatedly, and its trigger threshold can
be fixed, random, or dynamically adjusted (e.g., based on
evidence and severity of intrusion alerts collected at the
network perimeter).

Patch Theory. Darcs is a change-based version control
system. In contrast to conventional history-based version
control systems (e.g., Subversion, Git, CVS), which rep-
resent repository states as file trees, the state of a Darcs
repository is defined by the set of patches it contains. This
facilitates a cherry-picking operation—one that is not con-
strained by temporal dependencies among patches—that
adds flexibility to our patch set selection model. Cherry-
picking can be defined in terms of Darcs’ underlying patch

p1 p2 p3 p4 p5

Figure 3: A repository state showing patch dependencies.

theory [16, 17], summarized as follows:

Definitions. The state of a repository is called a context. We
write oAa to denote that a repository moves from context
o to context a via patch A. Patches are usually stored
sequentially, and for any consecutive pair of patches, the
final state of the first patch must be identical to the initial
state of the second patch. A sequence of patches is written
in left to right order, such as oAaBbCc (or simply ABC if
we omit contexts). Parallel patches share a common initial
context and diverge to two different states (A ∨B).

Inversion. Every Darcs patch is invertible, affording the
application of patches in either forwards or backwards direc-
tions to reach a particular context: (AB)−1 = B−1A−1.
In particular, AA−1 has no effect, and (A−1)−1 = A.
Anti-parallel patches have different initial states yielding the
same context (A−1 ∧B−1).

Commutation. The commutation of patches A and B is
represented byAB ↔ B′A′, whereA′ andB′ are intended
to perform the same change as A and B. Intermediate
states may differ however: oAaBb ↔ oB′xA′b. A merge
operation is defined as a pairwise commutation, taking two
conflict-free parallel patches and converting them into a pair
of sequential patches: A ∨B ⇒ AB′ ↔ BA′.

Cherry picking. Patch cherry picking refers to the ability
to pull patches from a repository regardless of the order
in which they were originally pushed into the repository.
To illustrate, consider the repository state depicted in
Figure 3. The repository consists of patches p1–p5, and the
changes made by each patch are summarized underneath
each patch. The dependencies between patches (denoted
by dashed arrows) are computed by Darcs. Figure 4a
illustrates cherry picking for this particular example. Pulling
patches p1, p2, and p5 from the source onto the destination
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Figure 4: Operations illustrating (a) change-based patch cherry picking, (b) patch obliteration and consistency, and (c) patch management:
patch set B denotes the set of patches making up the base source code of the software; patch dependencies pointing to it have been omitted.

repository automatically adjusts the selected patches to fit
the new context (without p3 and p4). Darcs performs such
adjustments using its patch manipulation algebra to allow
users to reason about patches as sets, despite patches being
stored as sequences internally.

Patch obliteration and consistency. Another advantage
of patch commutativity is that patches can be obliterated
(undone) without rolling back patches that historically
succeed them. In the example above, patch p4 can be
removed from the repository without undoing p5, as
illustrated in Figure 4b. To accomplish this, Darcs rearranges
the sequence of patches by commuting p4 with p5, and
then removes p4. However, Darcs does not allow p3 to be
removed without first undoing p4; allowing this operation
would constitute a patch dependency violation and render
the state of the repository inconsistent.

Patch Management. Figure 4c illustrates our patch man-
agement strategy. Regular patches are pushed (stored) into
Darcs repositories base and hp, and honey-patches are
stored into repository hp only. We call B the set of patches
(i.e., all code changes) that constitute the base version of
the software (e.g., the initial commit, a specific tagged
version of the application containing all patches up to the
tag). Candidate versions selected by the path selection
module are stored as tags (e.g., v1–vn) by pulling specific
patch sets from hp, which allows them to be easily retrieved
for version deployment.

This patch management strategy leverages the underly-
ing Darcs infrastructure, which automatically computes
the transitive dependency relations for any given patch
selection. For example, when pulling honey-patch p4-hp,
Darcs correctly pulls patch set B and patches p3, p4, and
p4-hp. This has the advantage of enabling a much simpler
patch set generation algorithm (see §4).

Alert Analysis and Correlation. The alert analysis and
correlation workflow pre-processes vulnerability and envi-
ronmental data to generate contextual information for patch
set selection. First, intrusion alerts are parsed, and each alert

Listing 1: Alert object containing threat metadata
1 { cveID: CVE−2014−6277,
2 targets: {('192.168.134.150', 80), ('192.168.134.139', 8080), ...},
3 cvss: { 'vector': 'CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/...'},
4 cwe: { id: 'cwe−78', term: 'OS Command Injection' },
5 cpe: { 'cpe:/a:gnu:bash:2.02.1', 'cpe:/a:gnu:bash:2.01.1', ...},
6 published: 2014−09−24T14:48:04.477−04:00,
7 public exploit: 'yes',
8 count: 115 }

class is annotated with descriptive statistics and target infor-
mation. In the second step, the correlation module parses
the intrusion detection system’s signature map to extract
the signature information for each alert object and cross-
references it with the corresponding CVE identification
derived from the reference field specified in the alert meta-
data. This step additionally filters intrusion alerts whose
signatures target vulnerabilities that have not been identified
as CVEs. The last step consults vFeed [18] to look up com-
mon vulnerability and exploit databases (e.g., CVSS, CWE,
exploit-db) to aggregate threat intelligence metadata (e.g.,
vulnerability risk scores, exploit availability) and alert ob-
jects, which are used by the game-theoretic decision engine
during the version selection process. Listing 1 shows an
alert object containing threat metadata for CVE-2014-6277.

4. Software Deception Steering
To enable a truly dynamic system that makes it difficult

for an adversary to fingerprint a deployed patch, QUICK-
SAND’s patch selection process is built atop a moving
target’s defense-in-depth strategy combining cyber agility
and honey-patching. In the context of software deception
steering cyber maneuvers, we discuss the three components
of this defense strategy [19]: configuration set C, timing
function T , and movement strategy M .

4.1. Configuration Set

The effectiveness of software deception steering depends
on the selection of a set of code versions (with honey-



Data: Π: patch set, B: base repository, HP : honey-patch
repository

Result: set of conflict-free patch sets
1 cs ← ∅
2 ∆← B

3 for (p1, p2) ∈ Π2 do
4 begin
5 if ¬pull({p1, p2},HP ,∆) then
6 begin
7 cs ← cs ∪ {(p1, p2)}
8 end
9 obliterate('[.*]-hp$', ∆)

10 end
11 remove(∆)
12 return {S ∈ ℘(Π) |S2 ∩ cs = ∅}

Figure 5: Conflict-free patch set generation algorithm

patches) that can be deployed at any point in time. This
requires each code version to be conflict-free.

Conflict-free Code Versions. A conflict in our system
is defined by the following syntactic rule: if (honey-
)patch A and (honey-)patch B prescribe different contents
for the same line of code, then A and B cannot coexist
automatically in the same code version. A code version can
be viewed as an element in the power-set of patches, i.e.,
v ∈ ℘(Π). Thus, pruning this power set based on the pair-
wise definition of conflict between patches results in the
configuration set C for the MTD.

Figure 5 details (in pseudocode) the algorithm for gener-
ating conflict-free code versions (or patch-sets) given the
inputs Π representing the set of available security patches,
the base repository B containing regular patches, and the
repository HP of honey-patches. Lines 1–2 initializes the
conflict-set cs to be empty, and a temporary repository
∆ as a copy of B. The algorithm then populates cs with
all conflicting patch pairs ∈ Π×Π (or Π2) by checking
the result of merging the corresponding honey-patch pair
from HP into ∆ and then resetting ∆ between each merge
operation (lines 3–10). Line 11 removes the temporary
repository. Finally, in Line 12 the set of conflict-free patch
sets is generated by pruning out all code versions from
℘(Π) that contain conflict-pairs. While complex pruning
rules (such as constraining honey-patches to be applicable
only to releases officially reported in the Common Platform
Enumerations database) can be specified, it reduces the car-
dinality of the configuration set and therefore the available
options for the cyber maneuver.

4.2. Timing Function
QUICKSAND uses an event-based timing function T

[19]. In this setting, when alerts are triggered by our system,
we use it to compute the existence of a particular attacker
type (discussed in the next section) and adapt our current
deception strategy given this knowledge. In scenarios where
alerts are ubiquitous, we consider a hybrid T that uses
aggregate alert information over a time-period to modify the
movement strategy.

4.3. Game-theoretic Movement Function
Given the set of conflict-free code versions, the system

must decide which is to be deployed at the time of switching.
To this end, we first consider a game-theoretic modeling of
the interaction between an adversary and QUICKSAND.
Then, we define an optimal deception selection strategy and
describe methods to compute it.

In real-world settings, defenders often target adversaries
having a particular set of characteristics. Curating the patch
set selection strategy to the nuances of this adversarial
profile thus results in more effective countermeasures. For
example, it is ineffective to honey-patch only older, nearly
obsolete vulnerabilities to gather threat intelligence about
expert adversaries armed with the newest exploits. To
address this concern, we model the problem as a two-player
Bayesian Stackelberg Game (BSG) inspired by prior MTD
web defense models [11].

Our BSG can be defined as a tuple 〈D,A, AD,
AA, UD, UA, P 〉, where D denotes the defender, A =
{A1, . . . ,Aθ} denotes the θ types of attacker, AD and
AA = {AA1 , . . . , AAθ } denote the action-sets A of the play-
ers, UD = {UD1 , . . . , UDθ } and UA = {UA1 , . . . , UAθ }
denote their utilities (with the subscripts representing the
utility of the players corresponding to the adversary’s type),
and P = {P1, . . . , Pθ} denotes a probability distribution
that represents the likelihood of facing each attacker type.
Our goal is to derive a robust deception strategy that works
well, in expectation, against all attacker types. Next we
discuss how each of these model parameters are obtained
and use real-world examples to elucidate the descriptions.

Players (D,A). The defender D represents the administra-
tor who sets up the system, inspects reported alerts, and
chooses to deploy a particular deception measure. The
attacker A has three types according to skill set level—
script kiddie (A1), early adopter (A2), and APT attacker
(A3). As the names suggest, A3 is an expert who spends
time in identifying vulnerabilities against a system, whereas
A1 only uses attacks that have publicly available imple-
mentation of exploits, and A2 is biased towards exploits
that are trending. A more formal distinction follows in our
discussion of player action sets.

Actions (A). The defender’s actions AD = C =
{v1, . . . , vn} consist of the n feasible candidate patch-sets
found using the algorithm in Figure 5. A defender can
choose any of these actions (also referred to as a pure strat-
egy) at any point in time. Given the patch sets used by
the defender, we compile a list of known exploits E that
can be used by an attacker. We enumerate the exploits
against our system in Table 1 and consider subsets of E, us-
ing the published and the public exploit fields
in the metadata object of the exploit (see Listing 1), to
describe the exploits available to each attacker type.

The script-kiddie’s (A1) attack set consists of CVEs that
have a known public exploit available. The early-adopter’s
(A2) attack set comprises vulnerabilities that have a public
exploit available for which the published date is less than



Table 1: Summary of (honey-)patchable vulnerabilities with corresponding CVSS scores.

Vulnerability Description Software CVSS
Impact (I) Exploitability (E) Overall (O)

CVE-2014-0160 Information leak Openssl 5.4 3.7 8.9
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N/E:H/RL:O/RC:C/CR:H/IR:X/AR:X/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:N/MA:N

CVE-2012-1823 System remote hijack PHP 3.4 3.7 7.0
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L/E:H/RL:O/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:L/MI:L/MA:L

CVE-2011-3368 Port scanning Apache 1.4 3.5 4.8
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:O/RC:C/CR:M/IR:X/AR:X/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:L/MI:N/MA:N

CVE-2014-6271 System hijack Bash 6.1 3.7 9.5
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H/E:H/RL:O/RC:C/CR:H/IR:H/AR:H/MAV:N/MAC:L/MPR:N/MUI:N/MS:C/MC:H/MI:H/MA:H

CVE-2014-6277 System hijack Bash 6.1 3.7 9.5
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H/E:H/RL:O/RC:C/CR:H/IR:H/AR:H/MAV:N/MAC:L/MPR:N/MUI:N/MS:C/MC:H/MI:H/MA:H

CVE-2014-0224 Session hijack and information leak Openssl 5.9 2.1 7.5
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N/E:F/RL:O/RC:C/CR:H/IR:H/AR:X/MAV:N/MAC:H/MPR:N/MUI:N/MS:X/MC:H/MI:H/MA:X

CVE-2010-0740 DoS via NULL pointer dereference Openssl 2.1 3.5 5.5
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L/E:P/RL:O/RC:C/CR:X/IR:X/AR:H/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:N/MI:N/MA:L

CVE-2010-1452 DoS via request that lacks a path Apache 1.4 3.5 4.8
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L/E:P/RL:O/RC:C/CR:X/IR:X/AR:M/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:N/MI:N/MA:X

CVE-2016-6515 DoS via request that lacks a path OpenSSH 5.4 3.7 8.9
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H/E:H/RL:O/RC:C/CR:X/IR:X/AR:H/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:N/MI:N/MA:H

CVE-2016-7054 DoS via heap buffer overflow Openssl 5.4 3.7 8.9
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H/E:H/RL:O/RC:C/CR:X/IR:X/AR:H/MAV:N/MAC:L/MPR:N/MUI:N/MS:X/MC:X/MI:X/MA:H

CVE-2017-5941 System hijack Node.js 4.0 3.7 7.6
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H/E:H/RL:O/RC:C/CR:L/IR:L/AR:L/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:H/MA:H

CVE-2017-7494 System hijack Samba 5.9 3.7 9.4
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H/E:H/RL:O/RC:C/CR:H/IR:H/AR:L/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:H/MA:H

t = 5 years. Thus, A2’s attack set includes the last two
CVEs in the list shown in Table 1 (i.e. |E2| = 4). The APT
attacker (A3) can write exploits for any of the existing
CVEs in the list, and has all the attack actions available (i.e.
|E3| = |E| = 12).

Utilities (U ). To design the utility for the players, we
primarily consider metrics that are a part of the Common
Vulnerability Scoring System (CVSSv3) [20]. We first
define a generic reward structure and discuss how it can
capture the various aspects of cyber deception. Then, we
highlight how we can obtain numeric values that represent
the utility of the players.

The utility structure for a player, given that defender D
deploys code version v and attacker Ai executes an exploit
e ∈ Ei, is as follows:

UDi (v, e) =

{
+rDi (v, e)− c(v) if e-hp ⊂ v
−ID(e)− c(v) otherwise

UAi (v, e) =

{
−rAi (v, e)− c(e) if e-hp ⊂ v
+IA(e)− c(e) otherwise

In the first case, where the code version deployed has a
honey-patch for exploit e that the attacker decides to exploit,
the reward for the defender has two components. First, D
gets a positive reward of rDi (v, e) because the attacker Ai
was trapped using the honey-patch. This value is specific to
the exploit being honey-patched as it needs to account for its
intelligence-gathering worth (e.g., IPs used by the attacker)

combined with the actionable protective measures that can
be taken (e.g., add such IPs to the firewall deny-list). In this
regard, given the attacks in our system, we consider the fol-
lowing ordering: rDi (v,DoS) ≤ rDi (v,Port Scanning) <

rDi (v, Info Leakage) < rDi (v,System Hijacking).
While the reward structure can encode context-specific

information about the operating environment (e.g., value
of targeted assets, mission critical requirements) or the
attacks (e.g., targeted port-scanning, distributed vs. targeted
DoS), we do not make such fine-grained distinctions as the
production context isn’t fully defined. This allows us to
disregard the equality condition in the first inequality relating
to the DoS and port-scanning vulnerabilities; we design
uniformly spaced rewards in the range [0,maxe I

D(e)].
Second, the value c(v) represents the cost of deploying a
particular honey-patch on the Quality of Service (QoS)
metrics on a system. We assume that all conflict-free
patch sets v have the same cost (i.e. these values cannot
incentivize D to pick a particular code version based on
QoS metrics) but can consider a nuanced value for c(v)
when this distinction becomes necessary.

Attacker Ai, when trapped by a honey-patch, incurs the
cost of crafting and executing the exploit c(e). This cost is
dependent on the complexity of an attack (represented by its
exploitability score) and the temporal metrics (what kind of
an exploit or patch is available and how reliable the source
is). Thus, we multiply the exploitability score (ES) of CVSS
with the temporal metrics to obtain c(e), similar to the
way temporal scores are obtained using the CVSS’s base



score (BS). The other negative reward rAi (v, e) captures D
gaining knowledge of an attacker’s TTPs. In our model, we
assume that the attacker is unaware of which vulnerabilities
are honey-patched, and thus rAi (v, e) = 0 ∀i ∈ {1, . . . , θ}.
One may choose to assign different scores to different
players. For example, this can be used to reflect the fact
that an APT attacker (A3) is better equipped to detect the
deception.

In the second case, when v does not contain a honey-
patch for e, the attacker can either gain reconnaissance if a
regular patch is deployed by leveraging the attack failure
information, or cause full impact without getting caught if
no regular patches are available (for relatively new CVEs).
For the latter case, D receives a negative utility against Ai
with magnitude equal to the impact score, while Ai receives
a positive utility with magnitude equal to the overall score.
The overall score trades off the impact of the attack with
the complexity of constructing and executing it. Table 1
shows the CVSSv3 metrics corresponding to the individual
exploits of the formulated game, leveraged to calculate
the utilities. For the former case, D’s loss is a fraction of
the impact score for giving out attacker info, whereas Ai
considers its effort cost and the utility of gathering the
information about patches.

Attacker Type Probabilities (P ). We start with an initial
probability distribution over attacker types (denoted as
〈Pr(A1), . . . ,Pr(Aθ)〉) that can be obtained by analysis
of historical data (from similar systems) by security experts.
Over repeated interactions, we can utilize an alert a raised
by the analysis and correlation module to update the attacker
type probabilities Pi as follows.

Pi = Pr(Ai|a) = Pr(Ai) · Pr(a|Ai)

= αPr(Ai) ·
∑
e

Pr(a|e) · Pr(e|Ai)

= αPr(Ai) ·
∑
e

Pr(a|e) · I(e ∈ Ai)

where α represents the normalization factor and I represents
an indicator function that equals 1 if the condition is met or
0 otherwise. The value Pr(e|Ai) should ideally represent
the strategy of an attacker type if they were to behave
rationally. However, an alert may be observed for any of the
available exploits, even when it is a sub-optimal choice
for a rational adversary; we account for this irrationality
by using the indicator function. Further, if an alert is
generated by multiple exploit actions e, an attacker type
with larger number of such exploits should be assigned
higher probability. Lastly, while some alert systems, such as
anomaly detection systems based on machine learning, may
detect certain exploits imperfectly, we limit ourselves to
deterministic detection mechanisms.

As an example, consider the use of a CVE from 2014
that is distinctive in observing a particular system alert.
Given A2 cannot perform this attack action, P2 becomes
zero. This probability is distributed between P3 and P1, as

A1 or A3 may have generated this alert. Thus, the initial
distribution 〈0.4, 0.4, 0.2〉 becomes 〈0.67, 0, 0.33〉 after
the first interaction with the attacker.

4.4. Strategy Computation
A strong threat model must account for an adversary

capable of performing target reconnaissance. In game-
theoretic terms, this boils down to the use of Stackelberg
Equilibrium, which encodes the assumption that the defender
acts as a leader while the attacker, who takes the role
of a follower, is aware of the defender’s deployment
strategy [11, 21]. In this setting, the defender plays a
mixed strategy (i.e., a probabilistic strategy over his actions)
making it impossible for the attacker to fingerprint the
deception strategy in place at any given point in time. In
this Bayesian Stackelberg Game setting, we can calculate
the optimal movement strategy (~x) for the defender by
maximizing D’s expected utility, as follows,∑

i

∑
v

∑
e

Pi xv q
i
e U
D
i (v, e) (1)

where each attacker Ai’s strategy ~qi is calculated with
the knowledge of the defender’s strategy ~x by maximiz-
ing

∑
e

∑
v xv q

i
e U
A
i , subjected to constraints that ~qi

represents a probability distribution. Both optimizations—
maximizing the defender’s expected utility given the attacker
maximizing their utility—can be folded into a single DOBSS
mixed integer linear program [10]. We use this formulation
for calculating the strategy of version emulation in QUICK-
SAND. At the start of each time period, we use this mixed
strategy to select a particular code version at random and
proceed with its deployment.

Version Deployment. Upon completion of patch selection,
QUICKSAND deploys a new version of the application into
the target environment. Figure 2 outlines the steps taken to
deploy an application. The first step consists of creating a
working repository for the application, by first pulling all
patches from base into target, and then pulling only the
selected honey-patch subset into target. This yields a
working repository state that is tagged with the selected
application version. The final step consists of building
the target application from sources, using a user-supplied
configuration as supplemental input. The configuration
parameters are specified per application, as shown in the
configuration file illustrated in Listing 2, to set up the build
environment and release the new application version.

5. Implementation
We developed an implementation of QUICKSAND for the

64-bit version of Linux. The implementation consists of four
Python components: the repository handler module consists
of about 150 lines of code and wraps Darcs CLI [17] to offer
an API to access the version control system. The analyzer
component consists of 90 lines of code, and leverages
py-idstools [22] to parse IDS signature maps and events
sourced in unified2 format (a serialized binary stream



Listing 2: QUICKSAND example configuration file
1 [Apache−1]
2 app = apache
3 base repo = ../data/base
4 hp repo = ../data/hp
5 deploy repo = ../data/deploy
6 configure command = make
7 install command = make install
8 patches = CVE−2014−0160:CVE−2014−6271: \
9 CVE−2014−6277:CVE−2014−7169: ...

10
11 [Apache−2]
12 app = apache
13 ...
14
15 [OpenSSL]
16 app = openssl
17 ...

format specification for IDS events), and vFeed [18] to
fetch and aggregate threat metadata to alert objects. The
patch selector module consists of an additional 140 lines of
code, and the version deployment module adds about 80
lines of code to the system. Our implementation depends on
a deployment environment that has been pre-configured
with a honey-patching framework, along with its process
sandboxing and monitoring facilities [2].

5.1. Conflict-free Patch Sets
Table 2 summarizes the conflict-free patch sets used

as inputs to our game-theoretic decision process. These
serve as candidate versions for patch selection, and encode
information about affected software, such as application
version compatibility. Each patch set implicitly encodes the
availability of regular (e.g., CVE-2017-7494) and honey
(e.g., CVE-2017-7494-hp) patch selections. Moreover, our
patch repository maintains patch metadata that is used to
filter unpatchable patch sets—patch selections for which a
version deployment is infeasible due to patch compatibility
and operation requirements.

5.2. Simulation Results
Table 3 highlights simulation results obtained using three

different movement strategies: static deception, uniform
random strategy (URS), and Bayesian Stackelberg Game
(BSG). For simulation, we assume that the four latest
vulnerabilities cannot be patched due to lack of officially
available patches; the defender faces maximum impact
for these and smaller impact for other vulnerabilities that
are regularly patched due to leakage of reconnaissance
information. The reward values for the defender shown in
Table 3 are plotted across 12 different runs. In each run, we
consider a distinct exploit is detected and update the beliefs
over the attacker types accordingly.

In comparison to a static strategy that deploys the most
profitable honey-patch set, software deception steering,
regardless of employed movement strategy, increases system
administrators’ expected utility. Although, in our game
setup, the use of uniform random strategy (URS) (i.e.,
selecting either of the 17 versions with equal probability

Table 2: Summary of conflict-free patch versions (-hp implied)

# Patch Set Affected Software (CPE)

1 CVE-2014-0160 openssl:1.0.1f (≤)

2 CVE-2014-6271,
CVE-2014-6277 bash:[4.3, 3.2.48, 2.0.5, 1.14.7] (≤)

3
CVE-2014-0160,
CVE-2014-6271,
CVE-2014-6277

openssl:1.0.1f (≤),
bash:[4.3, 3.2.48, 2.0.5, 1.14.7] (≤)

4 CVE-2010-1452 http server:2.2.15 (≤)

5 CVE-2011-3368 http server:[2.2.21,2.0.64,1.3.68] (≤)

6 CVE-2010-1452,
CVE-2011-3368 http server:2.2.15 (≤)

7 CVE-2012-1823 php:[5.4.1, 5.3.10] (≤)

8 CVE-2016-6515 openssh:7.2 (≤)

9 CVE-2014-0224 openssl:[1.0.1f,1.0.0l,0.9.8y] (≤)

10 CVE-2014-0160,
CVE-2014-0224 openssl:1.0.1f (≤)

11 CVE-2010-0740 openssl:0.9.8m (≤)

12 CVE-2010-0740,
CVE-2014-0224 openssl:0.9.8m (≤)

13 CVE-2016-6515,
CVE-2014-0224

openssh:7.2 (≤),
openssl:1.0.1f (≤)

14 CVE-2016-6515,
CVE-2010-0740

openssh:7.2 (≤),
openssl:0.9.8m (≤)

15
CVE-2016-6515,
CVE-2014-0224,
CVE-2010-0740

openssh:7.2 (≤),
openssl:0.9.8m (≤)

16 CVE-2017-5941 node-serialize:0.0.4 (≤)

17 CVE-2017-7494 samba:[4.1.23, 4.0.26,3.6.25,3.5.22] (≤)

Table 3: Benefits of different patch selection strategies.

Strategy Expected Utility ↑ # Patch-sets used ↓
Static −5.87 1
URS −1.66± 0.81 17
BSG −1.26± 0.89 11

at deployment time) is sub-optimal when compared to
the Bayesian Stackelberg Equilibrium strategy. Further,
the game-theoretic strategy identifies 6 code-versions
devoid of security benefits, significantly reducing the
defender’s overhead of maintaining all 17 patch-sets. While
the patch-sets #12 and #14 are pruned-out as #15 is a
strict-subset, we also notice path-set #13 has a non-zero
deployment probability. The patch-sets {1, 8, 9, 10, 12, 14}
are assigned zero-probability of deployment. Among the
patch-sets that have non-zero probabilities of deployment
(on average across the 12 runs), 5 of them have the highest
deployment probability of 14.4% and the patch-set #7 has
the lowest deployment probability of 1.1%.

While our game parameters are based on simulation
results over rewards obtained from security databases,
human-subject case studies must be conducted to understand
the true benefits of this model. In the future, we plan to
validate QUICKSAND under these three movement strategies
in empirical attack-defense exercises.



6. Future Work
Experimental validation. QUICKSAND is an ongoing
project, and future work is planned to fully evaluate our
software version emulation strategy. We tested our approach
on an experimental setup comprising virtual machines
pre-configured for honey-patching [2]. Prior work has
examined performance characteristics and the effectiveness
of honey-patching [23, 14, 2] for cyberdeception.

We plan to empirically evaluate our approach based
on a testing harness that streams the system synthetically
generated, labeled attack data derived from real network
traffic logs [24]. The labeled data will provide a ground
truth to assign performance scores for each software-version
generated by QUICKSAND, in a realistic and repeatable
manner. Toward this goal, we plan to collect a pool of
honey-patched vulnerabilities for highly-targeted server
applications and libraries and craft exploit scripts to inject
attacks into the regular traffic for the evaluation. Once we
have gathered labeled data from our tests, we will extract
features from the data set and tune QUICKSAND’s version
ranking function.

Human-subject evaluation. We also plan to leverage
human-subject experimentation to evaluate our techniques.
To this end, we are currently designing attack-defense
capture-the-flag (CTF) exercises to assess the effectiveness
of different deception configurations against human attackers.
The goal is to use CTF data to derive realistic set points for
our game-theoretic model.

7. Related Work
Cyber Agility. Moving target defenses (MTDs) [25]
seek to thwart attacks by mutating or evolving digital
environments faster than adversaries can adapt. MTD
can be viewed as a subclass of the broader field of cyber
agility [26], which includes any reasoned modification
to a system or environment in response to a functional,
performance, or security need. Such approaches sometimes
benefit from deceptive ploys that can impede adversarial
adaptation to the defense, but deception is not a requirement
for agility or MTD to be effective—if the cyber-maneuver is
faster than the enemy can react, the defense can be effective
without any deceptive element.

MTD techniques can be broadly classified into host-
based approaches, such as address space layout random-
ization [27, 28, 29], instruction set randomization [30],
multi-variant execution environments [31], and network-
based approaches, including address hopping [32, 33, 34],
dynamic routes [35], and dynamic topology [36]. Using
a typical attack kill chain (e.g., reconnaissance, access,
development, launch, and persistence) as a taxonomy, the
primary focus of host-based approaches is on development
and launch phases, while network-based techniques fo-
cus primarily on the reconnaissance phase. This is useful
for accommodating multiple threat models and designing
evaluation strategies for each technique (e.g., overhead to
perform reconnaissance and map a network topology).

Many of these agile defenses can benefit from decep-
tion (e.g., using network decoys to affect the perceived
topology of an enterprise network to impede reconnais-
sance). Dually, good deceptions are often agile (i.e., their
performance characteristics are indistinguishable from
the target they impersonate), therefore creating a reverse
synergy between such technologies. Our work benefits from
research advances in MTD and extends the class of possible
cyber maneuvers with a new mechanism based on software
deception to inform the adaptation process.

Game-Theoretic Defense-in-Depth. MTD has been
used to augment existing cyber systems with defense-
in-depth. These efforts can be organized based on the cyber
surfaces they move [19]. Our work introduces a new de-
ceptive cyber maneuver for honey-patching that thwarts
exploits on the exploration surface (e.g., probing) and on the
attack surface (e.g., system hijacking). Heuristic movement
strategies have been shown to be detrimental to the per-
formance of these dynamic systems, leading us to take a
principled approach that models the cyber-interaction as a
game to create optimal movement strategies [37, 38, 21].
While we leverage existing security knowledge in publicly
available databases (similar to [11]), we also consider con-
textual information and highlight important future research
directions for developing a language-based approach and
security metrics for cyber-deception. Unlike conventional
MTD approaches that showcase effectiveness of toy do-
mains and simulation environments [19, section IV], our
work discusses a concrete architecture and a deployment
model for enhancing enterprise security operations with
cyber deception.

8. Conclusion
Our approach enhances vulnerability patching with a

moving target defense technique that makes applications less
predictable and more robust against attackers anti-deception
efforts. Toward this end, we designed and implemented
an adaptive, software version-emulation architecture in
which the set of honey-patched vulnerabilities in a target
application is dynamically re-selected to increase the
likelihood of deceiving and entrapping attackers. Leveraging
a game-theoretic analysis that automates and optimizes
(honey-)patch management, our framework computes
effective movement strategies based on contextual threat
metadata and attacker model.
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