MTDeep: Boosting the Security of Deep Neural Nets

Against Adversarial Attacks with Moving Target Defense
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In Moving Target Defense, an agent defends a
system by randomly switching between a set of
system configurations in order to take away the Attack Surface

adversary’s advantage of reconnaissance. Classifier
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interacts with Probabilistic Moving
Selection —  Target
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Given an ensemble of classifiers,
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This improves robustness against adversarial inputs : o B |
while ensuring high accuracy on legitimate data. N |
We investigate the notion of differential immunity that
allows ensembles to conceive such defense mechanisms. 0
o Legitimate User (L) Adversarial User (A)
SeleCtlon Strategy MTDeep STassificaiion Tmage| [FGMuy, |FGM:[FGM; [DFy,| DF. |DF;, |[PGD.;, |[PGD.|PGD; |
MLP 99.1 3.1 20.39 38.93 1.54 | 89.8 |93.83 0.00 49.00 | 61.00
CNN 98.3 55.06 10.28 71.39 |98.87 | 0.87 |95.55| 7T8.00 0.00 90.0
HERNN 98.7 25.12 27.24 11.43 |95.38 |83.17| 3.66 23.00 51.00 0.00
We model the
Interaction between Normal form illustrating the payoff matrix. Utilities of the defender in this

constant sum game are proportional to the accuracy of the networks.
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users (both [eg]t]mate Mixed strategy at Stackelberg equilibrium improves robustness while

. not substantially loosing out on accuracy.
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The switching strategy is better than uniform random which o —s— MTDeep 100 —>— MTDeer
weighs less accurate and vulnerable configurations equally. NN NN
80 E L If;%;pN + \\'\\@\ o ljf{?viv
We notice impressive gains across various datasets. " 60 T e
Works even better when coupled with existing defense < <
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techniques like Ensemble Adversarial Training (EAT).
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Due to the randomization in the selection strategy, black box

attacks are also less effective against MTDeep as a whole than CooE gy e o0 0E el
against the individual networks. MNIST
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