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ABSTRACT

The field of cyber-defenses has played catch-up in the cat-and-mouse game of

finding vulnerabilities followed by the invention of patches to defend against them.

With the complexity and scale of modern-day software, it is difficult to ensure that

all known vulnerabilities are patched; moreover, the attacker, with reconnaissance

on their side, will eventually discover and leverage them. To take away the attacker’s

inherent advantage of reconnaissance, researchers have proposed the notion of

proactive defenses such as Moving Target Defense (MTD) in cyber-security. In this

thesis, I make three key contributions that help to improve the effectiveness of MTD.

First, I argue that näıve movement strategies for MTD systems, designed based on

intuition, are detrimental to both security and performance. To answer the question

of how to move, I (1) model MTD as a leader-follower game and formally characterize

the notion of optimal movement strategies, (2) leverage expert-curated public data

and formal representation methods used in cyber-security to obtain parameters

of the game, and (3) propose optimization methods to infer strategies at Strong

Stackelberg Equilibrium, addressing issues pertaining to scalability and switching

costs. Second, when one cannot readily obtain the parameters of the game-theoretic

model but can interact with a system, I propose a novel multi-agent reinforcement

learning approach that finds the optimal movement strategy. Third, I investigate the

novel use of MTD in three domains– cyber-deception, machine learning, and critical

infrastructure networks. I show that the question of what to move poses non-trivial

challenges in these domains. To address them, I propose methods for patch-set

selection in the deployment of honey-patches, characterize the notion differential

immunity in deep neural networks, and develop optimization problems that guarantee

differential immunity for dynamic sensor placement in power-networks.
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Chapter 1

INTRODUCTION

Strategy without [movement] is the slowest route to victory.

[Movement] without strategy is the noise before defeat.

– Sun Tzu (The Art of War)

The complexity and scale of modern-day cyber-systems make cyber-defense a chal-

lenging problem. While research in uncovering novel vulnerabilities are of utmost im-

portance, the system administrators land up playing catch-up in this cat-and-mouse

chase of vulnerability discovery and patch design. Moreover, the need for on-time de-

ployments and the scarcity of security skills among the majority of system designers

and developers result in the deployment of systems that are easy targets for attackers.

Most of the modern defense mechanisms, while necessary, are insufficient to thwart

cyber-adversaries. First, an attacker, with time on their side, can spend reconnais-

sance effort in modeling the attack surface and then carefully plan their attacks.

Second, implementation of the defenses in practice is often far from ideal, at times

introducing new attack surfaces and thereby more opportunities for an attacker to

exploit the system. Experts have predicted that by the end of 2020, 99% of the vul-

nerabilities exploited by adversaries will be known to security and IT professionals

since a year ago [3]. This is not surprising given the time and complexity associ-

ated with routine maintenance and security patching of current production systems.

Third, zero-day attacks developed by an attacker, leveraging information during the

reconnaissance phase, render traditional defenses ineffective.
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To address these challenges inherent in static cyber-defenses, the paradigm of

proactive defenses has emerged as a promising solution in the cyber-security com-

munity. The objective of these defenses is to take away an adversary’s inherent

asymmetric advantage of reconnaissance by continually moving aspects of the cyber

system. While methods like Cyber Deception [4] try to deceive an attacker by pro-

viding them with incorrect information about the system, Moving Target Defense

(MTD) [5] introduces randomness in the behavior of a system, rendering adversary’s

information-gathering actions nugatory at attack time. These defenses not only seek

to level the playing field for the defender but also act as a defense-in-depth strategy

that can be leveraged alongside static defense mechanisms to provide better security.

This thesis characterizes MTDs under a formal umbrella that helps us to (1) increase

the effectiveness of existing MTDs by improving movement strategies, and (2) in-

troduce MTD as a novel defense-in-depth solution in several application domains,

identifying key challenges associated with the defender’s strategy-set selection and

developing methods to address them.

In the first part of the thesis, we propose new and adapt existing artificial intelli-

gence (AI) techniques in multi-agent systems for improving the movement strategies

of existing MTDs. Note that random movement is a key aspect in the success of

MTD systems, as predictable changes can be easily exploited by the adversary. In

this regard, existing works merely consider näıve movement strategies, such as unbi-

ased randomization, to move between the various system configurations of an MTD,

completely ignoring the adversary’s capability of behaving strategically. Even if we

consider known attacks, such strategies can prove to be highly sub-optimal with weak

security guarantees and heavy performance impacts. To answer the question of how

to move, we first model the attacker-defender interaction in an MTD scenario as a

two-player game. Then, we can either (1) leverage existing knowledge to infer or (2)
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Figure 1.1: An overview of the thesis.

interact to learn optimal movement strategies that achieve the desired balance be-

tween performance and security impacts of MTDs. This part of the thesis labeled as

AI for MTD in Figure 1.1, our proposed inference and learning methods address chal-

lenges arsing out of (1) non-uniform switching costs, (2) large action sets of players,

and (3) multi-stage attacks in cloud systems. We show that both the inferred and

the learned strategies are at equilibrium and outperform state-of-the-art strategies

proposed in the security community.
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In the second part of the thesis, we consider the novel use of Moving Target

Defense for multiple application domains. Specifically, we consider the use of MTD in

three domains: cyber-deception, image classification, and sensor placement in critical

infrastructure networks. In all the three domains, we consider different aspects of what

to move. In the context of cyber-deception, we highlight the challenge of conflict-free

patch set selection and propose an end-to-end framework that can be leveraged for

the deployment of honey-patches alongside regular software patches to boost software

security. In the context of machine learning and critical infrastructure networks, we

identify the key challenge of ensuring differential immunity, i.e. the degree to which

an attack can cripple all the configurations of an MTD. We propose a metric to

formalize the notion of adversarial attack transferability [6] for an ensemble of Deep

Neural Networks, and show it is indicative of how effective an MTD will be. At last,

for unique detection of failure points in power networks, we generalize existing graph-

theoretic formalism to guarantee complete differential immunity. Our generalization

can be extended to an array of graph-theoretic solution concepts, enabling the effective

use of MTD in other domains in the future.

Most of the chapters discussed in this thesis consider the notion of model-based

strategy inference where we first leverage existing domain knowledge to construct a

game-theoretic model of the interaction and between the attacker and the defender

and then propose methods to find strategies at equilibrium. In contrast, the work

in Chapter 5 considers a model-free strategy learning approach where via repeated

interaction we simply learn the strategy at equilibrium. An intermediate approach

would be to learn the model and then leverage the model-based inference mechanisms

to find strategies. Such an approach, although not discussed in this thesis, may be

desirable in settings where the learned parameters of a game can be leveraged to

bootstrap the model that needs to be constructed for similar domains.
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1.1 Thesis Overview

The thesis, as shown in Figure 1.1, is divided into nine chapters. We provide a

brief overview of the chapters to follow.

(Ch. 2) We introduce the reader to works in Moving Target Defense (MTD) and a set

of concepts in game-theory that are leveraged throughout the document. A list

of useful notations is enlisted at the end of this chapter.

(Ch. 3) To formally characterize the problem of finding a good movement strategy, we

model the interaction between an MTD system and an attacker as a Bayesian

Stackelberg Game (BSG) and obtain the game parameters by leveraging public

attack data curated by security experts. In the context of software systems in

general and web-applications in particular, we consider the costs of switching

actions and show that the single-stage normal-from BSGs cannot account for it,

resulting in movement strategies that are too costly to deploy in the real-world.

We propose optimization techniques to infer movement strategies that try to

balance between achieving high security and reducing switching costs.

(Ch. 4) Cyber adversaries often leverage attack plans and exploit multiple vulnerabil-

ities to meet specific attack goals while defenders consider the deployment of

Intrusion Detection Systems (IDS) to detect such attack actions. The deploy-

ment of all possible IDSs can severely impact the Quality of Service (QoS) and

thus, we consider a moving target approach to shifting a subset of detection

mechanisms. First, we model the MTD scenario initially as a Stackelberg Se-

curity Game (SSG) and impose a novel utility structure; the utility values are

obtained using (1) exploit information in publicly-accessible databases and (2)

existing formalism in network security. This modeling assumes the attacker is
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capable of exploiting any vulnerability in the system and detection mechanisms

are always accurate when detecting attacks. To relax these assumptions, we

then propose a Markov Game approach to find movement strategies that pro-

vide higher security and reduce the performance impact. We demonstrate the

efficacy of our strategies in small-scale cloud security scenarios.

(Ch. 5) When the parameters of the game that models an MTD system cannot be read-

ily obtained but interaction with a simulator or real-world cyber system is pos-

sible, we consider if a model-free approach to learn movement policies. We first

propose a novel game-theoretic framework that trades-off between the generality

offered in modeling multiple attacker types and the sample complexity of learn-

ing. We then propose an approach, similar to approaches in multi-agent Rein-

forcement Learning, to learn movement strategies at Stackelberg equilibrium.

(Ch. 6) We introduce the dynamic aspect of MTD in cyber-deception. Specifically,

we consider the strategic deployment of honey-patches in production systems.

While we can leverage the methods developed in the earlier chapters to deter-

mine optimal movement strategies in these settings, developing a defender’s

action set for real-world deployment poses a key challenge. To address this

problem, we propose the use of existing, albeit less popular, version-control

systems in developing conflict-free defender actions and propose and end-to-end

system architecture that facilitates patch-set deployments.

(Ch. 7) To increase the robustness of deep neural networks, we introduce MTDeep–

an MTD approach for randomization at test-time. We define the notion of

differential immunity that provides a formal metric to gauge the transferability

of attacks against an ensemble; higher differential immunity implies higher

effectiveness of MTDeep. For norm-based perturbation attacks, we show
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that by formulating the interaction between the ensemble and the users as a

Bayesian Stackelberg Game, we can optimize for both accuracy and robustness.

Further, MTD is the first defense-in-depth solution that can be applied in

conjunction with existing defenses and can help to improve the security

guarantees afforded by these defenses.

(Ch. 8) In certain domains, constructing a defender’s action set AD that is differentially

immune may be possible. In this regard, we show that by leveraging MTD

for the placement of power measurement units to monitor anomalies in

high-voltage transformers, one can robustify failure identification in power

networks. Existing use of graph-theoretic modeling in this domain helps us

design methods that guarantee differentially immune MTD configurations and,

thus, provide better security.

(Ch. 9) We conclude the thesis by (1) showing how the works presented achieve the

goals of this thesis, (2) reflect on various aspects of the presented work, and

(3) highlight key takeaways.
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Chapter 2

BACKGROUND

Table of Contents � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

In this chapter, we formally define Moving Target Defense and leverage the cat-

egorization proposed in [7] to situate the works presented in this thesis. We then

introduce some preliminaries in game-theory that will be helpful to understand the

upcoming chapters. At the end, we provide a list of notations that appear throughout

the thesis (and can thus be used for quick reference).

2.1 Moving Target Defense

A Moving Target Defense (MTD) can be defined using the tuple 〈C, t,M〉 where

C = {c1, c2, . . . cn} denotes the set of system configurations that an MTD can switch

between, t denotes the timing function that determines the time at which the next

move action occurs, and M : H → C denotes the movement function where H is

the history of the system configurations it has switched to in the past. 1 In most

cases, we will assume H is either ∅ or Markovian and t is a constant function, i.e. the

movement occurs after a fixed-time period.

The three variables that define an MTD can help us characterize a particular

defense based on how it answers the following questions– (1) what to move (C), (2)

when to move (t) and (3) how to move (M). In this section, we will categorize the

answers to the questions and identify the membership of several MTDs proposed in

1As an MTD seeks to make the attacker uncertain about its success at the time of the attack,
M needs to be a random function to provide security benefits.
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Al-Shaer et al. [8]

Albanese et al. [9]
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Schlenker et al. [13]
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Zhu et al. [19]

Sengupta et al. [20, 21]

Carter et al. [22]

Thompson et al. [23]

Chowdhary et al. [24]

El Mir et al. [25]

Debroy et al. [26]

Prakash et al. [27]

Neti et al. [28]

Crouse et al. [29]

Bohara et al. [30]

Prevention Surface (PS)

Chowdhary et al. [31]

Clark et al. [32]

Detection Surface (DS)

Colbaugh et al. [33]

Venkatesan et al. [34]

Sengupta et al. [35, 36, 37]

Chowdhary et al. [38]

AS+PS

Aurujo et al. [39]
AS+ES+DS+PS

Sengupta et al. [40]

Figure 2.1: The various system surfaces that can be moved by a Moving Target

Defense (MTD). Movement of the exploration surface makes it more difficult for an

attacker to figure out the exact configuration of the underlying system. Moving the

attack surface makes an attack, designed based on reconnaissance, ineffective at attack

time. Moving the detection surface, similar to ‘patrolling methods’ in physical system

security, helps in providing efficient detection in budget-constrained (in cyber and

cyber-physical) systems. Movement of the prevention surface makes certain stages of

an attack such as data ex-filtration difficult. Several works exist at the intersection

of the various areas; in these cases, the movement provides benefits associated with

shifting two or more surfaces.
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the literature to these categories. This categorization helps us describe the landscape

of existing work and situate our contributions. Further, it provides (1) a common

terminology to describe any MTD and (2) a quick insight into the assumptions that

are made by them. An elaborate discussion in the context of MTDs for cyber-security

can be found in our survey paper [7].

2.1.1 The Configuration Set C – What to Move?

The components of a system that are of importance to an adversary can be broadly

categorized into four surfaces– the exploration surface, the attack surface, the detec-

tion surface, and the prevention surface. As described in Figure 2.1, the goal of

moving the different surfaces differ.

Our works on inferring movement for MTDs in web-application security move the

attack surface [41, 21]. The goal is to ensure that the reconnaissance information, col-

lected over time, used by the adversary to craft attacks, becomes stale at attack time

because the system shifts to a new configuration. In regards to shifting the detection

surface, we consider works in cloud-network security [35, 42, 38] and the security of

fingerprinting failures in power-networks [37]. The goal of these works is to reduce

the performance impact/cost of placing all possible detection sensors while ensuring

the objectives of sensor placement– attack detection for cloud-network security and

unique identification of failures in power-networks– are achieved with high probability.

While the majority of existing works in MTD shift a single surface, the idea of

developing MTDs that can shift multiple semantic surfaces of a system is a budding

research topic (see works at the intersection of the various sets in Figure 2.1). In

this regard, our thesis presents three works. In the context of image classification

with deep neural networks [43], we shift the classification surface. While this is the
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attack surface for adversarial perturbations, it duals up as the exploration surface

for model theft and construction of black-box attacks. For cyber-deception, we seek

to continuously move the code-set deployed to production [39]. This continually

shifts (1) the attack surface as the attacker is unsure which vulnerabilities can be

exploited and (2) the prevention surface as the defender can choose to gather exploit

information about a chosen set of vulnerabilities in the system. The third work on

learning movement strategies for MTD systems [40] can be applied to all MTDs,

regardless of the surface they shift; we only expect that repeated interaction with the

MTD environment (simulation, emulation or real-world test-bed) is possible. Hence,

it falls at the intersection of all the surfaces shown in Figure 2.1.

2.1.2 The Timing Function t – When to Move?

Given the configuration space C, the timing function seeks to answer the question

of when should a defender move from one c ∈ C to a c′ ∈ C? Existing works in

MTD can be broadly classified into two categories– ones that have a constant time-

period for switching and others that have variable time-period switching. As shown

in Figure 2.2, most of our works [21, 20, 35, 42, 39] consider a constant time-period

T provided as a hyper-parameter to the MTD. Often this time period is determined

based on empirical studies [23], but it does not explicitly consider the history of

movement or leverage information about attack events to modify T .

On the other hand, there exist two sub-categories under variable time-period

switching. First, one can specify that a move is triggered at the occurrence of a

particular event– while dependent on the type of the event, often such timing func-

tions adhere to Markovian assumptions. Our work on moving the classification surface

in Chapter 7 abides by this notion; the event that triggers the move is the classifi-
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El Mir et al. [46]

Li et al. [47]

Figure 2.2: The timing function that determines when a change occurs in an MTD

system can either be (1) a constant function with a pre-defined time-period decided

based on some empirical evidence or expert knowledge or (2) vary based on either

the occurrence of an event that triggers the move or formally define the notion of an

optimal timing function and propose ways to find it.

cation of a new input image. Second, an active line of research exists in developing

methods to find a good timing function based on the history of events. Some of these

works [16, 47] are inspired by our works on the game-theoretic formulation of MTD

[21, 20] and investigate the notion of formally defining and inferring an optimal timing

function for MTD for web-applications.

2.1.3 The Movement Function M – How to Move?

As stated above, the movement function M : H → C needs to be a random

function that takes the history of system configurations as an argument and outputs

the configuration that the defender should shift to. In theory, H can incorporate

an arbitrarily long trace of events that occurs in an MTD system to decide on the

movement strategy. However, this results in scalability issues. Hence, similar to
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Figure 2.3: Game-theoretic modeling for Moving Target Defenses (MTDs) may ei-

ther model the interaction as a single-stage or a multi-stage game. This helps us

characterize optimal movement policies. Complementary to the modeling aspect, one

can propose methods to leverage existing knowledge and infer the optimal movement

strategies or learn them via interaction with an environment. The choices made by a

particular MTD dictates their position in this space.

existing works, we only consider scenarios where either H = ∅ or H = C. The

latter, by definition, adheres to the Markovian assumption. In contrast to works that

consider a strategic timing function [47], we do not (need to) consider the time at

which a switch occurs as a part of H as we either have a constant-time period or

on-event switching.

In scenarios where an MTD is modeled as a single-stage game, H = ∅ and the goal

of the modeling is to come up with a single (mixed) strategy that can be leveraged

for movement. Multiple works that are a part of this thesis, such as MTD for web-

application security [21, 20], cyber-deception [39], image classification [17] and power-

networks [37], fall under this category. On the other hand, defense actions may often
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depend on the history or the current state of the system. When H 6= ∅, the MTD

should be modeled as a multi-stage interaction. Our works in cloud network security

[35, 42, 38] and web-application security [40] fall under this category.

Another important axis of categorization that emerges, given the works presented

in this thesis, is the notion of inferring vs. learning movement strategies. While game-

theoretic modeling developed in multi-agent systems need to be leveraged regardless of

this choice, the approaches to find the movement strategy differ significantly. When

inferring a movement strategy, we assume that information required by the game-

theoretic modeling can be obtained by leveraging publicly available data or domain-

dependent heuristics. Most of the works described in this thesis consider the inference

of strategies. On the contrary, when there is no trivial way of obtaining the parameters

of the model, but an interaction with an environment is possible, one can, by clever

and repeated interaction, learn the optimal movement function. We investigate this

line of research in [40].

Note that a major contribution of this thesis is to show that improving M is a

key aspect of improving the security and performance of MTDs. In this regard, we

consider the use of game-theoretic modeling. Further, we show that existing works

that designed M based on intuition, due to lack of formal modeling, are often doomed

to be sub-optimal when faced with a strategic adversary. Before discussing our work

in the upcoming chapters, we now provide a brief overview of some relevant concepts

and terminology in game theory.

2.2 Game Theory

This section intends to set the stage for understanding game-theoretic considered

in upcoming chapters. Rather than defining the concepts in the most general sense, we
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describe a set of preliminary concepts in the context of two-player games. Further, we

will stick to the notion of single-stage games and generalize these terms and definitions

to Markov games in the relevant chapters to follow.

We will consider the two players to be the defender D and the attacker A. The

name itself is meant to hint that we will be considering multi-agent settings that are

non-cooperative or adversarial in nature. The term pure-strategy represents an action

that a player in the game can perform. For example, in a game of rock-paper-scissor

(RPS), playing rock in a pure strategy. The set of all pure-strategies is called the Pure-

strategy set or the Action Set. We will denote the action set of the players using the

notations AA and AD. In RPS, the cardinality of the action set {rock, paper, scissor}

consists of three pure-strategies. A mixed-strategy is a probability distribution over

the pure-strategy set, i.e. over the actions of the action set. For example, a mixed

strategy represented as the probability distribution 〈0.2, 0.3, 0.5〉 for RPS denotes

that a player can play rock with a probability of 0.2, paper with a probability of 0.3

and scissor with a probability of 0.5. In this thesis, we will denote the mixed-strategy

of the defender using x and the mixed strategy of the attacker using q. Note that

the mixed strategy is an ordered vector representing the probability of playing a pure

strategy and thus, more aptly, should be represented using the notations ~x (or ~q).

For convenience, we will drop the vector notation and use x (/q) to represent ~x (/~q).

To refer to the probabilities of a particular action, say a ∈ AD (or ∈ AA), we use a

subscript along with the mixed-strategy variable, i.e. xa (or qa).

Given that we have two-players, the reward/utility of each player can be defined

using a two-dimensional matrix. For D and A, these matrices are denoted using

RD and RA. The (i, j)-th entry of the matrix, denoted using R
A/D
ij , represents the

reward/utility obtained when the player D (often termed as the row-player) plays
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Figure 2.4: The normal and extensive form representation of an example two-player

game.

action i and A (termed as the column-player) plays j. While the rewards R
A/D
ij

can represent random variables (eg. if rewards are drawn from a distribution) or

complicated function (eg. if rewards are a mathematical function of time), we consider

them to be real numbers. When the game is a constant-sum game, it implies that

RA+RD = c. Thus, the utility of the players can be simply represented using a single

reward matrix because other player’s utility can be obtained by simply subtracting

the reward of the first player from the constant c. In general-sum games, a relation

between RA and RD may not even exist. Most of the work in this thesis considers

the latter case; although exploiting structures, when they exist, can help in speeding

up inference.

The notion of a good vs. bad decision in game-theory is generally represented as

some form of equilibrium. In the normal-form game shown (using a bi-matrix table)

in Figure 2.4, note that a1 is a strictly dominant strategy for the row-player D, i.e.

D is better off playing a1 than playing a2 regardless of what the other player plays.

Realizing this, the rational choice for the column player A is to play b1, yielding a

utility of 2 to D and 3 to A. Thus, by the concept of iterated strict dominance, in

which one iteratively removes strictly dominated strategies, (a1, b1) is the optimal
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strategy in the game. Note that neither of the players has an incentive to unilaterally

deviate from this play, i.e. if one player sticks to their strategy, the other player

cannot obtain a gain in utility by switching their strategy. Thus, this is also the Nash

equilibrium of the normal form game. In general, a game may allow multiple Nash

equilibria; in such cases, the one(s) that gives the highest utility (for a particular

player) is called the optimal Nash equilibrium.

Often, one can allow for a notion of commitment in such games [57]. When we

allow the row-player D to commit to a strategy and consider this information is com-

municated to the other player A before they play, the notion of Nash Equilibrium

does not (always) result in the optimal rewards. For example, in the game shown

in Figure 2.4, if D played a2 and A was aware of this before making their move,

then A should play b2 yielding a reward of 3 to both players. Thus, when this struc-

ture of commitment and communication exists, the notion of Stackelberg Equilibrium

becomes important [58].

The act of committing to a strategy and communicating it to the other player

is different from the notion of full observability of actions (which exist in games like

Chess, Go, etc.). For example, the player D might commit to the strategy 〈0.1, 0.9〉

and communicate this strategy to A. With this knowledge, A does not know the

exact action D will play but can still base their strategy using this extra piece of

information. As we will only consider mixed Stackelberg strategies, this distinction is

an important one. Now, we discuss two important aspects of Stackelberg Equilibrium

strategies– (1) its existence and (2) its solution quality.

Existence of Stackelberg Equilibrium The particular notion of Stackelberg

Equilibrium (SE), termed as the Strong Stackelberg Equilibrium (SSE) considered
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in the context of Moving Target Defenses (MTD) discussed in the thesis, always ex-

ists. The distinction between Strong vs. Weak SE arises when given the defender’s

(in general, the leader’s) strategy x, the attacker’s (in general, the follower’s) best

response, denoted by the set Q(x) is not a singleton set. The elements of the set

Q(x) often exhibit an interesting property– all q(∈ Q(x)) yield the same reward to

the attacker but yield different reward values for the defender.

A Weak SE (WSE) makes the pessimistic assumption that the attacker will choose

the response q ∈ Q(x) that results in the worst-case reward for the defender. Thus,

a strategy x∗ is WSE for the defender if

minq∈Q(x)x
∗TRDq = supxminq∈Q(x)x

TRDq = V Dwse (2.1)

where V Dwse denotes the Weak Stackelberg Game value for D when allowing mixed

strategies. In such cases, it can be shown (via examples) that the game may not

admit a mixed strategy equilibrium, i.e the supremum cannot always be replaced by

a maximum [59, 57]. An interesting aspect is that if one considers only the set of pure

strategies for the defender, any finite two-player game is guaranteed to have a weak

SE [60] but it may not yield the maximum value V Dm attainable (i.e. a pure strategy

SE might not attain the supremum of Equation 2.1).

On the other hand, a Strong SE (SSE) assumes that the attacker is primarily

concerned about maximizing their payoff given a leader’s commitment to strategy

x and does not mind choosing the strategy q ∈ Q(x) that favors the defender, i.e.

selects the strategy q in the set Q(x) that yields the highest reward to D. Thus, a

strategy x∗ is SSE for the defender if

maxq∈Q(x)x
∗TRDq = supxmaxq∈Q(x)x

TRDq = V Dsse (2.2)
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where V Dsse denotes the Strong Stackelberg Game value for D when allowing mixed

strategies. Note that in this setting the supremum can always be replaced with the

maximum operator. To understand why, first notice that the set Q(x) always will

contain at least one pure strategy in support of the mixed strategy. To prove this, let

us consider the optimization problem that characterizes the set Q(x) [61].

maxq
∑

j∈AA

∑

i∈AD
RAi,jxiqj (2.3)

s.t.
∑

j∈AA
qj = 1

qj ≥ 0 ∀j ∈ AA

In this ‘linear’ program, the value of x, representing the leader’s strategy, is given.

Hence, finding the pure strategy j in the attacker’s pure strategy set AA that max-

imizes
∑

i∈AD R
A
i,jxi should characterize an optimal solution. To look at it from an-

other way, if we break the first constraints into two minimization constraints, the

constraint matrix is totally uni-modular and thus, admits integral optimal solutions.

Hence, Q(x) has at least one pure-strategy that yields the optimal reward for the

attacker.

Given this fact, one can only consider the pure-strategy responses of the attacker

to compute the defender’s strategy x. For each pure-strategy response a ∈ AA, the

defender can solve the following set of linear (maximization) programs and choose

the x∗ that results in the highest value [62].

maxx
∑

i∈AD
RDi,axi (2.4)

s.t.
∑

i∈AD
RAi,axi ≥

∑

i∈AD
RAi,a′xi ∀ a′ ∈ AA

∑

i∈AA
xi = 1

xi ≥ 0 ∀i ∈ AD
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While this linear program may not be feasible for all pure-strategies (especially when

the pure strategy is strictly dominated), it will be feasible for at least one pure-

strategy (given our previous discussion that any x, at attacker has a pure-strategy

best-response). Thus, we can always find an x∗, thereby showing that an SSE (for

Equation 2.2) will always exist.

In our works, we formulate MTD as a Bayesian normal-form game in [21, 20, 17, 39]

and as a a normal-form game in [35, 37]. In all these scenarios, we adapt either

the multiple-LP approach [62] or the single Mixed-Integer Quadratic Programming

(MIQP) approach [61]. Thus, the existence guarantees continue to hold in our context.

In discounted stochastic games, our zero-sum formulation in [38] always admits a

maximin Markov strategy (that is equivalent to SE). We show that our general-sum

formulations in [63, 40] also admit a Markovian SSE, although sub-optimality may

result because of the Markovian assumption [64].

Uniqueness and optimality of SSEs Given the multiple LP approach, discussed

in Equation 2.4, it is evident that multiple SSE may exist for a given Stackelberg

Game, but regardless of the SSE chosen, they all yield in the same utility for the de-

fender (equal to the SSE game value). For example, there may be two pure-strategies

for A, say a, a′ ∈ AA, that yield the same SSE game value for the defender, but

correspond to the defender selecting different (pure or mixed) strategies x and x′.

While the strategy pairs (a, x) and (a′, x′) are both SSE strategies, the game value,

as determined by Equation 2.2, remains the same. Thus, all strategies at SSE are

optimal for the defender.
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Table 2.1: Table of Notations

D , Defender

A , Attacker

AD , Pure strategy/actions of the defender

AA , Pure strategy/actions of the attacker

x/~x , Mixed strategy of the defender

q/~q , Mixed strategy of the attacker

xa/qa , probability of the defender/attacker choosing action a ∈ AD/AA

RD , Rewards/Utility for the defender

RA , Rewards/Utility for the attacker

R
A/D
ij , Reward/Utility of the attacker/defender when defender play action

i and attacker play action j
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Part I

Artificial Intelligence for Moving

Target Defense (AI for MTD)
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Chapter 3

INFERRING MOVEMENT STRATEGIES AT STACKELBERG EQUILIBRIUM

IN BAYESIAN GAMES WITH SWITCHING COSTS FOR WEB-APPLICATION

SECURITY

Table of Contents � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

C Attack Surface Shifting in Web-applications

t Constant/Fixed Time Period

M Stackelberg Strategy of a Bayesian Normal-form Game with

Switching Costs

Web-applications, extensively used by an array of businesses, often handle sensi-

tive business and user data. Vulnerabilities present in these web-applications pose

a serious threat to the confidentiality, integrity, and availability (CIA) of a business

and its users [65]. While numerous static (white-box) analysis and dynamic (black-

box) analysis tools exist for identifying vulnerabilities in a system [66, 67], they have

become far less effective due to the increasing complexity of web applications, their

dependency on an array of downstream technologies, and the limited development

and deployment time [68].

In [69], researchers propose the use of moving target defense (MTD) for web-

application security. The MTD continually moves the technologies in the web-stack
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to (1) reduce the time-window of attacks for an adversary, making the web-application

more resilient while (2) ensuring expected services are always available to the legiti-

mate users. However, The design of good quality switching strategies is left as an open

problem. In this chapter, we show that a good movement strategy is key to effectively

maximize the security of MTD-based web-applications.

To design effective switching policies, we first model the interaction between the

defender D and the attacker A as a Bayesian Stackelberg Game (BSG) [61]. The

Bayesian nature stems from the uncertainty over attacker types that may attack

the web-application. The Stackelberg nature is inherent in the context of a web-

application security setting because a defender D has to deploy an MTD-based web-

application first (making them the leader) that will eventually, with time on the at-

tacker’s side, be fingerprinted by the adversary (making them the follower). Second,

we use real-world attack data to determine various parameters of our game-theoretic

model. We propose a formal framework to define attacker types and can automati-

cally generate their pure-strategy sets by mining the National Vulnerability Dataset

(NVD) for Common Vulnerabilities and Exploits (CVEs). The rewards of our game

are obtained by leveraging crowd-sourced knowledge of security experts encoded in

the Common Vulnerability Scoring System (CVSS). Third, we address a novel chal-

lenge offered by MTD systems– the performance impact incurred due to a move/shift

action. While some move actions allow the system to gracefully handle the change in

code flow for the incoming request, others might drop the packet and expect the user

to retry thereby impacting the customer’s experience. In this regard, we find that

existing equilibrium computation methods, developed extensively for physical secu-

rity problems [70], do not account for the cost of switching from one configuration to

another. Thus, we adapt existing optimization methods that infer movement strate-
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Figure 3.1: A moving target web-application system requires an effective switching

strategy.

gies at Stackelberg Equilibrium to penalize costly switches and encourage moves that

have less impact on the performance of the system alongside security considerations.

Beyond the design of effective switching policies, we discuss two novel challenges

that arise in the use of MTD for web-application security. First, all known vulner-

abilities of a web application cannot be fixed in an instant owing to functionality

constraints, limited developer bandwidth, and ongoing discovery of novel vulnerabili-

ties. Thus, prioritizing what needs to be patched first becomes crucial. We show that

the increased complexity of MTD systems coupled with uncertainty about attacker

types exacerbates the difficulty of prioritizing known vulnerabilities. In this regard,

we define this problem formally and propose a preliminary solution. Second, the

actual uncertainty over attacker types modeled by our framework may differ from re-

ality. To understand the effect of this difference, we conduct experiments to measure

the robustness of existing baselines and the inferred movement strategies.

We introduce the domain of MTD systems for web applications in Section 3.1. In

Section 3.2, we model the MTD as a Bayesian game– we define the attacker types,

propose rules to construct their pure-strategy sets and methods of obtaining rewards
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by using established security metrics. To find an effective switching strategy, in

Section 3.3 we propose a solver that maximizes system security while accounting for

switching costs and empirically study the efficacy and robustness of the generated

strategies in Section 3.4, comparing it to the state-of-the-art. We then formulate the

problem of identifying critical vulnerabilities in Section 3.4. We briefly discuss related

work in Section 3.5 before concluding the chapter in Section 3.6.

3.1 Moving Target Defense for Web Applications

In this section, we present a brief overview of the MTD system in the context of

web applications. We instantiate the notations defined in Section 2.1 in regard to the

particular setting at hand.

The Configuration Set C A configuration set for a web-application stack is de-

noted as C = C1 × C2 · · · × Cn, a Cartesian product of the technologies in the n-

technological stacks. Here, Ci denotes the set of technologies that can be used in the

i-th layer of the application stack. A valid configuration c ∈ C is thus, an n-tuple

that preserves the system’s operational goals.

Consider a web application that has two stacks (i.e. n = 2) where the first layer

denotes the coding language used to make the web-application and the second layer

denotes the database technology used to store or retrieve the data handled by this

application. Say, the technologies used in each layer are C1 = {Python, PHP} and

C2 = {MySQL, postgreSQL}. Then, a valid configuration can be c = (PHP, MySQL).

The diversity of an MTD system, which is the number of valid configurations, is

upper-bounded by the cardinality of C(= |C1| · |C2| . . . |Cn|).

26



Attacks Software security is defined in terms of three characteristics - Confiden-

tiality, Integrity, and Availability [71]. In a broad sense, a cyber attack is defined

as an act that compromises any of the aforementioned characteristics of a cyber sys-

tem. The National Vulnerability Database (NVD) is a public directory consisting of

Common Vulnerabilities and Exposures (CVEs). For each CVE, the database lists

a set of technologies that are vulnerable; this helps us identify attacks that can be

used against our web-application system. (we use the terms vulnerability and attack

interchangeably going forward).

The Movement Strategy M As described in Section 2.1, M in our case repre-

sents the decision making process for the defender– to select the next valid system

configuration c′ given the present deployed configuration c (where both c, c′ ∈ C).

An added complexity in the domain is the presence of switching costs that are in-

curred when the system moves from a configuration c to another configuration c′.

Thus, the aim of a good strategy is to maximize the security provided by an MTD

system while trying to minimize the cost of switching. State-of-the-art MTD systems

in web-applications use a uniformly random switching strategy (i.e. select any c ∈ C

with probability 1/|C|); this assumes that switching between any two configurations

incurs the same cost by default [72].

We now describe game-theoretic modeling that can be leveraged to generate

switching strategies for the MTD system. With this model, we will be able to char-

acterize optimal movement and, in turn, show that a uniformly distributed switching

strategy is sub-optimal.
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Figure 3.2: An example game between the defender with two valid configurations and

an attacker who can be one of two types.

3.2 Game Theoretic Modeling

In this section, we model the Moving Target Defense as a normal-form Bayesian

Game. An example of the formulated normal-form game is shown in Figure 3.2.

Agents and Agent types As discussed before, The two players in our game (N =

2) are the defender D and the attacker A. The set θi is the set of types for player

i (= {D,A}). Thus, θD and θA denotes the set of defender and attacker types

respectively. The j−th attacker type is represented by θAj.

When an attacker attacks an application, its beliefs about what (resource/data)

is most valuable to the application owner (defender) remains consistent. Thus, we

assume that the attacker knows that there is only one type of defender when they

attack a particular web application. Thus, we have |θD| = 1 and a sub-script based

notation, introduced in the case of the attacker, in no longer necessary.
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We consider a finite number of attacker types where each is defined in our model

using the following three tuples,

θAi = 〈name, {(expertise, technologies) . . . }, probability〉

where the second field is a set of two-dimensional values that express an attacker’s

expertise (∈ [0, 10]) in a technology. The rationale for using values in this range stems

from the use of the Common Vulnerability Scoring System (CVSS) described later.

Lastly, the set of attacker types have a discrete probability distribution associated

with it. The probability PθAj represents the defender’s belief about the attacker type

θAj attacking their application. Obviously, the probability values of all attacker types

sum up to one
∑

θAj∈θA PθAj = 1.

Note that one can define attacker expertise over a ‘category of attacks ’ (like

‘BufferOverflowAttacks’ ) instead of technology specific attacks. We feel the latter

is more realistic for our domain. This definition captures the aspect that an attacker

type can have expertise in a set of technologies. Since these attacker types and the

probability distribution over them are application-specific, it is defined by a domain

expert and taken as an input to our proposed model. For instance, a defender using

a no-SQL database in all configurations of his MTD system assigns zero probability

to an ‘SQL database’ attacker type because none of their attacks can compromise the

security of his present system.

The assumption that the input probability distribution over all the attacker types

can be accurately specified is a strong one. We will later discuss how errors in judg-

ment can affect the effectiveness of a switching strategy and define a measure to

capture the robustness of the generated policy in such circumstances.
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Agent actions We define AD as a finite set of actions available to player D. The

defender’s action set AD comprised of switch actions, each corresponding to a valid

configuration, c ∈ C of the web application. Hence, AD = C and |AD| is bounded

by the number of valid configurations. As mentioned earlier, the number of valid

configurations |C| is often lower than |C1| · |C2| . . . |Cn| in real-world settings because

a technology used in layer i may not be compatible with a particular technology used

in layer j (6= i) rendering that configuration invalid.

For the attacker, AθA represents the set of all attacks used by at least one attacker

type. A particular attack a belongs to the set AθA if it affects at least one of the

technologies used in the layers for our web application (C1 ∪ C2 · · · ∪ Cn).

We now define a function f : (θAt, a) → {1, 0} for our model. The function

implies an attack a belongs to an attacker type θAt’s arsenal AθAt(⊆ AθA) if the value

of the function is 1. This function value is based on (i) the expertise of the attacker

type contrasted with the ‘exploitability’ necessary to execute the attack, and (ii) the

attacker’s expertise in the technology for which the attack can be used. We provide

a concrete definition for the function f after elaborating on what we mean by the

exploitability of an attack.

For (almost all) CVEs listed in the NVD database, we have a six-dimensional

CVSS v2 vector representing two independent scores – Impact Score (IS) and Ex-

ploitability Score (ES). For an attack action a, let ESa (∈ [0, 10]) represent the ease

of exploitability (higher is tougher). Each attack also has a set of technologies it

affects, say T a.
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Let us say that the set of technologies an attacker type θAt has expertise in, is Tt.

We can now define the function f as,

f(θAt, a) =





1, iff Tt ∩ T a 6= φ ∧ ESa ≤ expertiset

0 otherwise

Where the condition ESa ≤ expertiseθAt must hold for all the technologies ∈

Tt ∩ T a.

Rewards Now that we have attack sets for each attacker type, the general reward

structure for the proposed game is defined as follows:

RAa,θAi,c =





+xa if a ⊂ υ(c)

−ya if a can be detected or a ⊂ c′

0 otherwise

RDa,θAi,c =





−xd if a ⊂ υ(c)

+yd if a can be detected or a ⊂ c′

0 otherwise

where RAa,θAi,c and RDa,θAi,c are the rewards for the attacker A and the defender D

respectively when the attacker type θAi uses an attack action a against a configuration

c (∈ C). The function υ(c) represents the set of security vulnerabilities (CVEs) that

configuration c has. Also, c′ refers to a honey-net configuration. A honey-net is a

configuration setup with intentional vulnerabilities for trapping attackers.

The reward values for D when an attacker does not attack (chooses the NO-OP ac-

tion), is zero. Moreover, a defender gets zero rewards for successfully defending a sys-

tem. We reward them positively only if they are able to reveal some information about

or catch the attacker without impacting operation requirements for the non-malicious

users. They get a negative reward if an attacker successfully exploits their system.
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To instantiate the variables xa, ya, xd and yd, we make use of CVSS(v2) metric.

This metric provides the Impact (IS) and Exploitability Scores (ES), stated above,

which are combined to calculate a third score called Base Score (BS) [73]. Using

these, we now define the following:

xd = −1 ∗ IS

xa = BS

Note that the BS considers both the impact and the exploitability scores. When the

IS for two attacks is the same, the one that is easier to exploit gets the attacker

a higher reward value. The ease of an attack can be interpreted in terms of the

resource and effort spent by an attacker for an attack vs. the reward (s)he attains by

harming the defender. Although the robustness of our framework provides provisions

for having yd and ya, detecting attacks on a deployed system or setting up honey-nets

is non-trivial in present web application systems. Hence, there are no actions where

values of yd or ya are required in our present application.

Before moving on to the next section, we describe briefly the security aspects that

the two independent scores– IS and ES– seek to capture in the context of real-world

software systems. For this purpose, we first define the six independent feature values

that are necessary to generate these scores.

• Access Vector (AV) is dependent on the amount of access an attacker needs

to exploit a vulnerability. An attack that needs physical access to a system will

have a lower score than one that can be exploited over the Internet.

• Access Complexity (AC) represents the complexity of exploiting an attack.

A buffer overflow attack on an Internet service is less complex than an e-mail

client vulnerability in which a user has performed attachment downloads fol-

lowed by executing it and hence has lower AC value.
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• Authentication (Au) level required to execute the attack. If no sign-up

account is required to exploit the system, this value is high. In contrast, if one

needs multiple accounts to exploit the vulnerability, the value is low.

• Confidentiality Impact (C) scores are low if only some (non-relevant) in-

formation gets leaked. The highest impact occurs when say, the entire database

is compromised if the vulnerability is successfully exploited.

• Integrity Impact (I) refers to the attacker’s power to modify files or behavior

of a system if he executes the exploit successfully. A higher value indicates more

power.

• Availability Impact (A) represents the power of a successful exploit to bring

down the availability of a system. A successful Denial of Service (DoS) that

brings down an application server, will have a high impact.

From these values, one can obtain the two independent scores using the following

formulas,

ES = 20 ∗ (AV ) ∗ (AC) ∗ (Au)

IS = −10.41 ∗ (1− (1− C)(1− I)(1− A))

The CVSS values are generated by security experts across the globe. A rigorous

treatment of how one should determine these values can be found in [73].

Our model takes a time range as input. It then parses all the CVEs (a) from the

NVD in that time range to finally filter out the ones that can affect at least one of

the configurations in our system (a ⊂ υ(ci)). Note that CVEs older than a particular

time become irrelevant when composing an attacker type’s pure strategy set against

a modern-day MTD system because (1) they either have no effect on the updated
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versions of the technologies or (2) have popular solutions available to developers at the

time of application development. For our application, we obtain this input range from

our security experts. The normal-form representation of an example game between

two attacker types is shown in Figure 3.2.

Switching Cost The switching costs can be represented by a Kn×n matrix where

the n rows (and columns) denote the n system configurations. The cell Kij denotes

the cost of switching when the defender moves from configuration i to configuration

j. As mentioned earlier, the values in K are all non-negative. Our security experts,

who have written the code to automatically move from one configuration to another,

hand-coded these values in each cell of the matrix. We provide some guidance in

choosing these values here and give a concrete example of how we selected these for

our application later.

If there is no common technology between configurations c and c′ involved in a

switch operation, the cost will be large. Also, switching technologies in a specific layer

may incur more cost than switching technologies in other layers. In the developed

MTD system, we find that switching between databases incur large costs because the

structure of the data needs to be changed for shifting, and the time required to copy

huge amounts of data from one database to another must also be accounted for.

The matrix K for our system turns out to be symmetric, i.e. Kij = Kji ∀ i, j ∈

{1, . . . n}. Also, Kii = 0, which implies that there is no cost if no configuration switch

occurs. Note that although our security experts think this is the structure of rewards

for the developed system, the modeling is generic enough to allow for asymmetric

costs. Lastly, we choose the values of Kij in the range [0, 10]. The reason for this

upper bound becomes clear in the upcoming section.
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3.3 Switching Strategy Generation

In this section, we first introduce the notion of Stackelberg Equilibrium for our

security game. This is the defender’s movement strategy that maximizes their re-

ward (and thus, (only) the security of the system). We then briefly introduce existing

optimization methods, relevant to our particular set, that can use to generate the equi-

librium strategy. Given it cannot model the switching costs, it produces movement

strategies that heavily impact performance. Finally, we describe our optimization

method that addresses this concern.

3.3.1 Stackelberg Equilibrium

The strategy generated for the designed game needs to capture the reconnaissance

aspect. Note that the game starts only after the defender has deployed the web appli-

cation, acting as a leader. Given that an attacker can observe the switch moves (by

probing) and in due time learn the switching strategy (as |C| � ∞) of the defender

(using Maximum Likelihood Expectation). 1 Thus, the defender needs to select a

strategy that maximizes their reward in this game, subject to the threat-model where

the attacker knows their (mixed) strategy. 2 This is exactly the problem of finding

the Stackelberg Equilibrium in a Bayesian Game [74]. The resulting mixed strategy

is the switching strategy for the defender. Unfortunately, as stated in Chapter 2,

this problem is NP-hard owing to the uncertainly over multiple attacker types [75].

Before we find a Strong Stackelberg Equilibrium (SSE) for our proposed game,

we state a couple of well-founded assumptions made. First, an attacker chooses a

1Consider a |C|-sided dice. The problem is similar to finding the probability of each side coming
up given a set of rolls.

2This implies that a pure-strategy, unless it is completely secure, makes the attacker jobs easier.
Also, modern web-applications employ a pure-strategy.
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pure strategy, i.e., a single attack action that maximizes their reward. As discussed

in Chapter 2, this assumption is not-limiting because for every mixed strategy of

the defender at SSE, the attacker has a pure strategy [76]. Second, the notion of

Strong Stackelberg Equilibrium states that if there are two (or more) pure-strategies

that yield the same reward to A but yield different rewards to D, A chooses the

one that favors D. While this notion does not sit well in an adversarial setting, it is

popular because (1) an SSE is guaranteed to exist in a normal-form BSG and (2) it

is always possible for D to play a slightly perturbed equilibrium strategy that forces

the attacker to play in their favor.

To solve for the optimal mixed strategy, one can use the Decomposed Optimal

Bayesian Stackelberg Solver (DOBSS) [61]. This optimizes the expected reward of the

defender over all possible mixed strategies for the defender (~x), and pure strategies

for each attacker type (~q θAi) given the attacker type uncertainty (~PθAi). We now

define the objective function of the Mixed Integer Quadratic Program (MIQP).

max
x,q,v

∑

c∈C

∑

θAi∈θA

∑

a∈AθAi

PθAiR
D
a,θAi,c

xcq
θAi
a (3.1)

We observe that solving the MIQP version is more efficient (in computation time and

memory usage) than solving the Mixed Integer Linear Program (MILP) version of

DOBSS. We hypothesize that this seemingly surprising phenomenon is caused because

the MILP formulation results in an increase in the dimensions of the solution space.

Precisely, the MIQP solves for |AD| +∑θAi∈θA

∑
aj∈AθAi

|aj| variables where as the

MILP solves for |AD| ∗∑θAi∈θA

∑
aj∈AθAi

|aj| variables. While we do not have a

theoretical proof to support this claim, we conduct a set of empirical evaluations to

test our hypothesis.
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Figure 3.3: The MILP takes more time than the MIQP formulation as the number

of attack actions (for all types combined) increases. The numbers in bracket indicate

|AA| in the (MIQP, MILP) for each instance.

In Figure 3.3, preliminary results on our MTD domain show that our hypothesis

holds. We see that as the number of attack variables (plotted on the x-axis) increases,

the time difference between ∆ = tMILP − tMIQP increases. The points on the x-axis

are obtained by considering all possible non-empty subsets of attacker types described

later in Table 3.2 (and all types being equally probable). We consider an average of

three runs to calculate the ∆ values (plotted on the y-axis). Even for the smallest

instance with 34 attack actions, the time difference is positive, indicating that the

MILP formulation for DOBSS takes more time than the MIQP formulation. While

there is a constant increase in the ∆ as |AA| increase, this is hardly noticeable for

|AA| ≤ 303 because millisecond time difference seems negligible in comparison the
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time difference (in multiple seconds) seen as |AA| > 303. The tuples over the points

indicate the number of optimization variables in the MIQP followed by the number of

variables in the MILP. We notice a sudden jump in ∆ as the number of total attack

actions (across attacker types) increases from 303 to 317.

Owing to this phenomenon, we will refer to the MIQP (as opposed to the MILP)

formulation, both presented in [61], whenever referring to the DOBSS solver going

forward. Lastly, we note that Equation 3.1 does not consider that switching costs

between defender strategies; it inherently assumes that the costs for movement, re-

gardless of the switching configurations, are uniform.

3.3.2 Incorporating Switching Costs

As defined in the last section, the cost for switching from a configuration i to a

configuration j can be represented as Kij. The probability the system is in configu-

ration i and then switches to configuration j is xi ·xj. Thus, the cost incurred by the

defender for a switch action from i to j is Kij ·xi ·xj. The expected cost for any switch

action is
∑

i∈C
∑

j∈C Kij ·xi ·xj. To account for cost, we can subtract this expression

from the objective function in Equation 3.1 with a cost-accountability factor α (≥ 0)

to obtain

max
x,q,v

∑

c∈C

∑

θAi∈θA

∑

a∈AθAi

PθAiR
D
a,θAi,c

xcq
θAi
a − α ·

∑

i∈C

∑

j∈C
Kij · xi · xj

Unfortunately, this results in a Bilinear Mixed Integer Programming problem, which

is not convex. To ameliorate this problem, we introduce new variables wij that

represent an approximate value of xi ·xj. We first use the piece-wise-linear McCormick

envelopes to design a convex function using these wij-s that are known to generate

good estimates and thus, a satisfying and yet, scalable solution to this problem [77].

Along with these constrains, we now describe the final MIQP convex optimization
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problem as follows,

max
x,q,v

∑

c∈C

∑

θAi∈θA

∑

a∈AθAi

PθAiR
D
a,θAi,c

xcq
θAi
a − α ·

∑

i∈C

∑

j∈C
Kijwij (3.2)

s.t.
∑

c∈C
xc = 1 (3.3)

∑

a∈AθAi

qθAia = 1 (3.4)

0 ≤ vθAi −
∑

c∈C
RAa,θAi,cxc ≤ (1− qθAia )M (3.5)

wij ≥ 0 ∀ i, j (3.6)

wij ≤ xi ∀ i, j (3.7)

wij ≤ xj ∀ i, j (3.8)

∑

j∈C

∑

i∈C
wij = 1 ∀ i, j (3.9)

∑

j∈C
wij = xi ∀ i (3.10)

∑

i∈C
wij = xj ∀ j (3.11)

xc ∈ [0 . . . 1], qθAia ∈ {0, 1}, vθAi ∈ R

∀ c ∈ C, θAi ∈ θA, a ∈ AθAi

where M is a large positive number. ~qθAi and vθAi give the pure strategy and its

corresponding reward for the attacker type θAi, and ~x gives the mixed switching

strategy for the defender. Constraint 3.5 solves the dual problem of maximizing

rewards for each attacker type (vθAi) given the defender’s strategy which ensures that

attackers select the best attack action. The constrains 3.6, 3.7, and 3.8 represent the

McCormick envelope that provides lower and upper bounds on each wij.

We now introduce more constrains on the values wij relevant to our problem to

generate tighter approximations for the value xi · xj. Since we consider all possible
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switches,
∑

j∈C
∑

i∈C xi · xj = 1. This is enforced by 3.9. Lastly, for each i,
∑

j∈C xi ·

xj = xi · (
∑

j∈C xj) = xi. This is represented by the constraints 3.10 and 3.11.

The optimization problem defined in Equation 4.5 guarantees a good strategy for

the defender when the MTD application is being deployed. After that, in a repeated

game consideration, this strategy becomes sub-optimal because the wij–s does not

take into account the defender’s decision in the previous round (given that some

element of ~x is 1 and all the rest 0). To address this, the expression xi ·xj would have

to be x
(t)
i · x(t+1)

j where x
(t)
i = 1 for the i-th configuration that was deployed at time t

and 0 for the others. The variables here are only x
(t+1)
j ∀j, which can easily be found

by solving the following optimization problem,

max
x,q,v

∑

c∈C

∑

θAi∈θA

∑

a∈AθAi

PθAiR
D
a,θAi,c

xcq
θAi
a − α ·

∑

i∈C

∑

j∈C
Kij · x(t)

i · xj

with the domain constrains and constraints (3), (4), and (5). Note that this is a

convex function because x
(t)
i are constants. Thus, the defender can now obtain the

best strategy after each round. Although a Markov Game formulation of this setting

with states corresponding to the number of configurations in C is possible, we don’t

consider it because dealing with this the uncertainty over attacker types adds an extra

layer of complexity.

If we now allow the maximum cost of switching to be 10, we can see that the

values for the switching cost become comparable in magnitude to the defender’s utility

values. This helps us to provide semantic meaning for the cost-accountability factor,

α. The first term in the objective function seeks to maximize the defender’s reward,

which in turn maximizes the security of the web application. The second term, on

the other hand, seeks to reduce the expected cost of the switching actions. Thus, if

a defender selects a low α value, they give more significance to the first term, i.e.
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PHP, Python, PHP, Python,

MySQL MySQL postgreSQL postgreSQL

PHP,MySQL 0 2 6 10

Python,MySQL 2 0 9 5

PHP,postgreSQL 6 9 0 2

Python,postgreSQL 10 5 2 0

Table 3.1: Switching costs for our system.

security. To provide a sense to the reader, we later show in the experimental section,

how strategies and reward values are effected with changing alpha values.

3.4 Empirical Evaluation

The goal of this section is to answer three key questions. First, does our proposed

Bayesian Stackelberg Game (BSG) model generate better strategies than the state-of-

the-art? Second, can we effectively compute the set of critical vulnerabilities? Third,

who are the sensitive attacker types, and how robust is our proposed strategy?

Test Bed Description

To answer the questions mentioned above, we develop a real-world MTD web appli-

cation (Figure 3.1) with 2 layers. The key idea of applying MTD to web applications

requires you to have several versions of the same system, each written in either a

different language, using a different database, etc. This diversity is not ubiquitous in

legacy web applications, due to the cost, time, and resources required to build sev-

eral versions of the same web application. To aid this, we developed a framework to
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Name (Technologies, Prob. |AθAi |

Expertise)

ScriptKiddie (SK) (PHP,4), (MySQL,4) 0.15 34

Database Hacker (DH) (MySQL,10), (postgreSQL,8) 0.35 269

Mainstream Hacker (MH) (Python,4), (PHP,6), (MySQL,5) 0.5 48

Table 3.2: The attacker types with the number of attack actions.

automatically generate the diversity necessary for this web application. The current

prototype is able to convert a web application coded in Python to an equivalent one

coded in PHP, and vice versa, as well as a web application using a MySQL database

to an identical version that uses PostgreSQL, and vice versa. In the future, as more

and more variations are developed, the set of defender’s actions will increase.

The present set of valid configurations for our system is C = {(PHP, MySQL),

(Python, MySQL), (PHP, postgreSQL), (Python, postgreSQL )}. The costs for

switching between configurations is shown in Table 3.1. These cost values generated

are based on the following considerations:

• Switching between different languages while keeping the same database dialect

incurs minimal cost. Workload is primarily rerouting to the correct server with the

source code.

• Switching between different database dialects while keeping the same language

incurs a higher cost due to the conversion required for the database structure and its

contents. One also has to account for copying large amounts of data to the database

used in the current system configuration.
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• Switching between different database dialects AND different languages incur the

highest cost due to the combination of the costs of the database switch as well as the

penalty for rerouting to the correct server with the source code.

The attacker types along with the attack action set size are defined in Table 3.2.

We mined the NVD for obtaining CVE data from January 2013 to August 2016 to

generate these attack sets. When the stakes of getting caught are too high for an

attacker type, (s)he may choose not to attack. Hence, we have a NO-OP action for

each attacker type.

The optimization problems for the experiments were solved using Gurobi on an

Intel Xeon E5 2643v3@3.40GHz machine with 6 cores and 64GB of RAM.

3.4.1 Strategy Evaluation

We evaluate our method using Bayesian Stackelberg Games on our real-life web

application against the Uniform Random Strategy (URS), which is the state-of-the-

art in such systems [72]. We plot the values of the objective function in Equation 4.5

for both the strategies as α varies from 0 to 1. For URS, we use the exact values

of wij = 0.25 ∗ 0.25 = 0.0625 ∀ i, j. The plot is shown in Figure 3.4. Both are

straight lines because although the value of α changes, the strategy for URS is the

same (by definition) and the one generated by BSG also remains the same. The latter

case came as a surprise to us initially. On further investigation, we noticed that in

the formulated game for our web-application, the Stackelberg Equilibrium for our

application (luckily) coincides with the least switching cost strategy.

These attacker and defender strategies are shown in Table 3.3 along with the value

of the defender’s reward (i.e. the first term in the objective function in Equation 4.5).

Notice that, not only is the mixed strategy generated by BSG more secure than URS,
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Figure 3.4: Objective function values for Uniform Random Strategy vs. Bayesian

Stackelberg Game with switching costs as α varies from 0 to 1.

it leverages fewer configurations than all valid configurations |C| = 4 the system has

to offer. Our result is consistent with earlier work in cybersecurity which shows that

a higher number of configurations does not imply better security guarantees [78].

Studying the effect of α-values

To empirically show that our solver is actually considering costs of switching, we

change the value for switching from (PHP, PostgreSQL ) to (Python, postgreSQL)

and vice-versa from 2 (yellow boxes in Table 3.1) to 10. We plot this scenario in

Figure 3.5. As soon as α ≥ 0.4, the BSG generates (0.25, 0.25, 0.25, 0.25) (which

is URS) as the most optimal strategy. After analysis, we note that this happens

because the most powerful attack actions in the arsenal of the attacker types are for

the systems (PHP, MySQL) and (Python, MySQL). When, one does not prioritize
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Method Mixed Strategy Defender’s Reward Attack sets (SK, DH, MH)

URS (.25, .25, .25, .25) -5 CVE-2016-3477, CVE-2015-3144,

CVE-2016-3477

BSG (.0, .0, .5, .5) -3.25 CVE-2014-0185, CVE-2014-0067,

CVE-2014-0185

Table 3.3: Comparison between the strategies generated by Uniform Random Selec-

tion (URS) vs. Bayesian Stackelberg Game (BSG).

switching costs (α ∈ {0, 0.1, 0.2, 0.3}), the system keeps switching between the more

secure configurations nullifying the good attacks of the attackers. As switching costs

start to get more significant (α ∈ {0.4, 0.5, . . . 1.2}), the objective function value

reduces if it sticks to the stronger configurations since switching costs are now high

for these. It switches to the URS in this case. Beyond that, it switches to the

strategy (0.25, 0.5, 0, 0.25) as α keeps on increasing. When α becomes close to 2, it

completely ignores the security of the system and tries to minimize the switching

cost by proposing the strategy (0.5, 0.5, 0, 0) as the cost for switching between (PHP,

MySQL) and (Python, MySQL) is the least (= 2).

In Figure 3.5, we show the change in the values of the objective function with

respect to α. At first, the BSG generates a better strategy when compared to URS.

When the BSG strategy becomes the same as the URS (for 0.4 ≤ α ≤ 1.2), the

objective function value for BSG becomes lower than URS. This is not surprising since

BSG is merely trying to estimate the value xi ·xj with the variables wij, whereas URS

is using the exact value. As we increase α further, we are essentially discouraging

switching in an MTD system since now the cost of switching becomes too high (URS

is not affected by this).
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Figure 3.5: Left: Showcases the change in probabilities associated with a particular

configuration. Right: Objective function values for Uniform Random Strategy vs.

Bayesian Stackelberg Game with switching costs as α varies from 0 to 2.5 when the

cost of switching shown in Table 3.1 are same in all cases except the values in the

yellow boxes (which is made to be 10).

3.4.2 Identifying Critical Vulnerabilities

In real-world development teams, it is impossible to patch all the vulnerabilities,

especially in a system with so many technologies. In current software systems, given a

set of vulnerabilities, a challenging question often asked is which vulnerabilities should

one fix to improve the security? For an MTD system, this becomes a tough problem

since the defender needs to reason about multiple attacker types – their probabilities

and attack actions. For a given k, the set of k fixed vulnerabilities which result in

the highest gain in defender reward is termed as the k critical vulnerability set.

To address this problem, we remove each k-sized attack set from the set of all

attacks (AA−k = AA \ D ∀ D ⊂ AA & |D| = k) and evaluate the objective function

(Equation 4.5). The set(s) AA−k that yield the highest objective values, provide the

vulnerabilities D that should be fixed.
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k Critical Vulnerability Sets Objective Value CPU Time

1 {(CVE-2014-0185)} -2.435 3m 15s

2 {(CVE-2014-0185, -1.973 421m 27s

CVE-2015-5652)}

Table 3.4: Most critical vulnerability in the MTD system and the time required to

generate it.

We studied this complicated behavior for some toy examples. An interesting

phenomenon we noticed was that a k-set critical vulnerabilities (k−CV) is not always

a subset of the (k + 1)−CV [21]. Suppose we want to find three vulnerabilities that

we want to fix. As it is not a super-set of the 2-CV, we need to solve this problem

from scratch with k = 3. Note that there is going to be a combinatorial explosion

here. As the value of k increases, we end up solving |AA−k| =
(|AA|

k

)
MIQP problems

to identify the k−CVs.

Critical Vulnerabilities in the Developed System

We start with k = 1 and increase the number of critical vulnerabilities by one in

each step. The result remains the same for α ∈ [0, 1]. Unfortunately, the brute

force approach and the scalability of algorithms for solving normal extensive form

BSGs proves to be a key limitation. This is unsurprising since the total number of

unique CVEs spread among the attackers is 287. When k = 3, we end up solving
(

287
3

)
optimization problems, failing to scale in both time and memory requirements.

Thus, we only show critical vulnerabilities identified up to k = 2 (in Table 3.4) using

α = 0.2.
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At present, we are trying to develop a single MIQP formulation that tries to

approximately generate the k-CV set. To reduce the combinatorial explosion, we

plan to use switch variables that can turn attack actions on and off. This comes at

the cost of increasing the number of variables in the formulated optimization problem.

3.4.3 Robustness & Attacker Type Sensitivity

It is often the case that a web application administrator (defender) cannot accu-

rately specify the probability for a particular attacker type. In this section, we see

how this uncertainty affects the optimal rewards generated by the system. We provide

a notion for determining sensitive attacker types and measuring the robustness of a

switching strategy.

For each attacker type i, we vary the probability PθAi by ±x% (P new
θAi

= PθAi(1±
x

100
)) where x is the sensitivity factor, which can be varied from a low value to a high

value as needed. Note that now p = PθAi × x
100

needs to be distributed amongst the

probabilities of the remaining attacker types. To make sure that this distribution

is done such that the sensitivity of attacker i actually stands out, we propose to

distribute p amongst the other attacker types using a weighted model as per their

existing probabilities as shown below. For attacker j (6= i), its new probability would

be:

PnewθAj
= PθAj (1∓ p∑

k(6=i) PθAk
) (3.12)

When x% is subtracted from the probability ~PθAi , then the sign in the above equation

becomes positive, and vice-versa.

We now formally define the loss in reward to the defender as the probability

distribution over the attacker types change. Let Ro be the overall reward for the

defender when he uses the mixed strategy for the assumed (and possibly incorrect)

model of attacker type uncertainty (~PθA) on the true model (~P new
θA

). Let Rn be the
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Figure 3.6: NLR values for BSG (left) and URS (right) when the attacker type’s

probabilities vary from 0% to 200% of its original value.

defender’s optimal reward value for the true model. We compute the Normalized Loss

in Rewards (NLR) for the defender’s strategy as follows:

NLR = Rn−Ro
Rn

(3.13)

Note that NLR values are ≥ 0. Higher values of NLR represent more sensitive

attacker types. Inaccurate probability estimates for the sensitive attackers can be

detrimental to the security of our application. Note that lower NLR values indicate

that a generated strategy is more robust.

Evaluation Based on the Developed System

We compute the attacker sensitivity for our system varying the probability of each

attacker type from −100% to +100% (of its modeled probability) with 10% step sizes.

We plot the results in Figure 3.6 using Equation 3.13. The Mainstream and Database

hacker (MH & DH) is the least sensitive attacker types. The NLR values for both

these attackers are 0. This is the case since the real-world attack action used by these

types remains the same even when their probabilities change. On the other hand,
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if the probability associated with the Script Kiddie (SK) is underestimated in our

model, we see that the strategies deviate substantially from the optimal.

In this section, we use α = 0.2. The max NLR for our BSG strategy is 2.35 Vs. 9

for URS. The average of the 60 NLR values is 0.061 for BSG and 0.88 for URS. These

values indicate our model is more robust to variance in attacker type uncertainty than

the present state-of-the-art.

3.5 Related Work

The majority of existing work in regards to the design of switching strategies for

MTD systems is highly domain-specific. Thus, a trivial adaptation of these methods

for MTDs in web application security is difficult. In this section, we discuss some

of these works, highlighting their limitations in the domain of web applications and,

thus, motivating the need for our solution.

The use of uniformly randomized switching strategies is considered to be the

holy grail in theoretical formulations MTD systems [1]. We will demonstrate that

our strategy, which can utilize domain-specific information, clearly outperforms such

state-of-the-art. In the context of formal modeling, moving the underlying operating

system has been previously viewed as Stochastic Game and trivial modifications to

uniform random strategies such as selecting randomly between configurations differ-

ent from the currently deployed configuration have been proposed [79, 22]. These

works are highly curated for domains where an in-depth analysis of the code per-

taining to individual configurations of the MTD system is possible and cease to be

pragmatic for complex web applications. In [80], the MTD system is modeled as a

game called PLADD; it is based on Flip-It games [44]. The game modeling assumes

that different agents control a particular resource (eg. server) in different rounds of
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the game. While the notion of continuous-time brings in an interesting and much-

needed challenge to game-theoretic methods, this surrender of complete control of a

resource to an attacker is impractical in most cyber-security applications (especially,

web applications).

The closest work is perhaps the game-theoretic formulation in [78], where the

authors consider a leader-follower setting for a dynamic platform defense. The goal is

to come up with movement strategies that maximize a diversity metric based on code

similarity among the different configurations of the MTD system. Such a diversity

measure is (1) difficult to obtain in the domain of web applications and (2) can only be

leveraged if the movement is considered for chosen layers of the web-stack. Further,

the work neither considers the uncertainty in the attacker model nor explicitly models

the costs for switching.

These aspects of uncertainty in the attacker model and attacker reconnaissance

have been extensively handled in the context of Bayesian Stackelberg Games (BSG)

[61], making them an appropriate choice for modeling MTD for web-applications.

While existing solution methods in the physical security domains [70] provide scal-

able and equilibrium movement strategies for physical security settings, these do not

consider the movement costs a defender may incur. Thus, we propose an optimiza-

tion method that maximizes the defender’s reward and minimizes the overall cost

of switching between the various configurations of the web-application. The existing

DOBSS solver [61] provides an essential stepping stone for the design of our approach.

The use of the Common Vulnerability Scoring System (CVSS) for rating attacks

in cyber-security settings has been previously investigated in [81]. CVSS; we discuss

in much more detail in the upcoming sections. As stated above, it helps us to obtain
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the player’s utilities for our game-theoretic model. In the context of prioritizing

vulnerabilities to fix in MTD systems, we did not find any related work.

3.6 Concluding Remarks

In this chapter, we modeled a Moving Target Defense for web-applications in a

formal game-theoretic framework. This modeling helped us to consider uncertainty

over pre-defined attacker types and known real-world exploits present in the sys-

tem in trying to come up with an efficient movement strategy for shifting among

the defender’s configurations C in the MTD. We note the use of (1) the National

Vulnerability Database to mine relevant attacks and (2) the Common Vulnerability

Scoring Service to come up with rewards of our game; we plan to leverage their use

in the upcoming chapters. We adapted an existing Mixed-Integer Quadratic Pro-

gram to fine-tune the Stackelberg strategy of our formulated game, accounting for

the switching costs associated with movement.
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Chapter 4

INFERRING MOVEMENT STRATEGIES AT STACKELBERG EQUILIBRIUM

FOR MOVING TARGET INTRUSION DETECTION IN CLOUD NETWORKS

Table of Contents � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

C Detection Surface Shifting in Cloud Networks

t Constant/Fixed Time Period

M [4.1] Stackelberg Strategy of a Normal-form Games with Large

Defender Action Set

[4.2] Stackelberg Strategy of a Markov Game effective against

Multi-stage Attacks

Cyber adversaries often plan attacks that start with access over a public network

interface and, via a slow-and-low multi-stage approach, end at a particular desired

location in the defender’s system. While defenders leverage measures such as placing

Intrusion Detection Systems (IDS) to monitor an adversary’s attack behavior, deploy-

ing all possible IDSs can have a negative impact on the system’s performance. Hence,

an idea to reduce the impact on performance is to place a subset of IDS systems at

a time and move the detection surface continually.

In modeling this moving target approach as a game, the defender’s strategy set

needs to consider all possible subsets for placement of IDS systems resulting in a
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combinatorial explosion of their action set AD. In Section 4.1, we address this issue

by imposing a particular structure on the rewards of the game but assume that the

attacker is capable of attacking any point of the cyber-system at any point in time.

In contrast, Section 4.2 assumes that an attacker can plan multi-stage attacks. Us-

ing the normal-form game-theoretic modeling discussed in Chapter 3 and Section 4.1

results in infinite number of attack strategies (where the attacker may consider loopy

paths through the cyber system). To address this challenge, we model the problem

as a Markov Game. While the Markovian and the fully-observable assumption im-

pose certain restrictions, we show that our modeling helps up be far-more scalable in

cloud-network scenarios.

4.1 Movement Strategies against Single-Stage Attacks

System Administrators, often, use Intrusion Detection Systems (IDS) to detect

attack vectors in modern-day cyber-systems [82]. These IDS systems perform sophis-

ticated operations– like signature-matching [83], anomaly detection [84, 85], machine

learning [86, 87, 88] etc. – to investigate either live traffic on the wire (using Network-

based IDS (NIDS) [89, 90]), or monitor resources on a machine (using Host-based IDS

(HIDS) [91, 92]) to flag anomalous requests that might result in potential loss of con-

fidentiality, integrity or availability. Cloud service providers, who host third-party

applications on their platform, may encounter non-trivial challenges when it comes

to deploying these IDS that can identify vulnerabilities present in their system due

to operational constraints and deployment of applications that use legacy software

[93]. The foremost among these challenges is the placement of IDS on all nodes of a

large network, which results in reduced performance [94, 34] (also see Section 4.1.3).
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Moreover, third party users of the cloud platform, due to privacy and security reasons,

have constraints about sharing their data with the cloud provider [95].

Thus, given a cloud service provider’s performance constraints and privacy con-

straints of customers, we look at the problem of placing a limited number of IDS

systems in the various nodes of the cloud system. It is trivial to see that if we place

IDS systems statically that only monitor certain attacks on specific nodes, an attacker

(especially a stealthy one, i.e. one who resides inside a deployed system and can at-

tack a node anywhere in the network, in contrast to having access to only hosts at

the entry point) will eventually figure out our placement strategy [34]. At this point,

a strategic attacker can always select attacks that circumvent the placed detection

systems, thus passing through our cloud network undetected [96]. To address this,

we design a Moving Target Defense (MTD) approach for dynamic placement of IDS

systems on cloud systems.

The MTD placement mechanism for the cloud framework places both Network and

Host-based IDS (abbreviated as NIDS and HIDS respectively). In this chapter, we will

use a NIDS called snort [97] for detecting malicious behavior over the network and a

HIDS known as auditd on the hosts of our cloud system. Further, we will assume is

that NIDS is placed at the gateway of each tenant network and the HIDS is deployed

on each Virtual Machine (VM). A dynamic switching (or MTD) strategy selectively

turns on/off the different NIDS or HIDS systems; it can be used to monitor network

packets using NIDS or the behavior of hosts using HIDS, and shift the detection

surface at each round. The on/off commands sent out by a centralized entity, easily

available in Software Defined Networking (SDN), hardly impact system performance

at the time of switching. Hence, we do not consider switching costs in this chapter.

The key contributions we make in this section are,
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• We formulate the problem of placing limited IDS systems in a large cloud-based

network using MTD as a two-player normal-form game between the defender

and an attacker. Similar to the previous chapter, the Strong Stackelberg equi-

librium of this game provided the defender with an optimal movement strategy

that shifts the various IDS placements.

• We obtain the utility values of the players in this game by combining (1) the

Common Vulnerability Scoring System (CVSS) that has been previously used

to represent the impact of attacks on the defender’s system [98] and (2) the

centrality values of the nodes in which an IDS is deployed that lets us capture

both the connectivity information and the impact on performance when an IDS

is placed on that node [34].

• We design a scalable optimization problem to find the Stackelberg Equilibrium

of our formulated game; it gracefully deals with the combinatorial explosion of

the defender’s pure-strategy set (subsection 4.1.2). Further, we allow an input

parameter α that lets a defender balance between the security of the system

and the impact on the performance of the system.

• We define the problem of finding the most critical vulnerability in a cloud en-

vironment with a strategic attacker and propose a method to solve it (Sec-

tion 4.1.2).

• We demonstrate the effectiveness of our approach on a simulated example and

compare it to several state-of-the-art strategies. We then provide experimental

results in a small-scale cloud-based environment (subsection 4.2.3).
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Figure 4.1: Defender’s system on the enterprise cloud that an attacker wants to

attack.

4.1.1 Game-Theoretic Modeling

In this section, we describe the various aspects of the game-theoretic model– the

players and their action/pure-strategy sets using a small real-world scenario that we

set up on an enterprise cloud (Figure 4.1). We then discuss how we can leverage (1)

CVSS data and (2) the network topology information to obtain the rewards of the

formulated game.

Threat Model In our attack model, we consider a multi-tenant cloud network.

The controller node, shown in the Figure 4.1, is used for network management and

orchestration. The network administrator (or the defender) utilizes a management
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ID VM cb Vulnerability CVE ID IOC

a1 G1 4 SSH Buffer Overflow CVE-2016-6289 NIDS sshAlert

a2 G2 7 rlogin CVE-1999-0651 NIDS rlogin

a3 W 0 Cross Side Scripting CVE-2016-2163 HIDS webAccess

a4 D 0 Weak Credentials CVE-2001-0839 HIDS fileIntegrity

a5 F 0 vsftpd backdoor CVE-2015-1419 HIDS ftpLogin

Table 4.1: The different virtual machines (VMs) deployed on the defender’s net-

work, their betweenness centrality (cb) in the graph, the known vulnerabilities in

these nodes, and the corresponding Network/Host-based Intrusion Detection Sys-

tems (NIDS/HIDS) which can detect these attacks, also known as the Indicators of

Compromise (IoC).

network to access controller nodes and cloud servers hosting VMs. We consider two

agents– the defender D, who is trying to deploy IDS and an (external or stealthy)

attacker A, who is trying to remain undetected while attacking the system. As

a running example, we will use the scenario deployed by D shown in Figure 4.1.

Furthermore, this system has a set of known vulnerabilities, that are yet to be fixed

and as per our assumptions, known to both the agents D and A.

We assume that the attacker A can be located either inside or outside the cloud

network. The attacker’s primary goal is to (1) compromise a VM using known vul-

nerabilities and (2) remain undetected while doing so. Since the attacker can utilize

network probing to identify the OS and software versions, it will eventually get to

know the vulnerabilities (CVEs) associated with the system, and can then systemat-

ically exploit these in order to obtain network access or elevated privileges. Further-

more, the attacker can only be detected when it attacks a vulnerability for which the
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corresponding IDS is in place at the time of exploitation. For stealthy attackers [99],

who have to spend a lot of cost and/or effort in gaining access to an internal node,

the latter is of utmost importance.

Now given our system, we can extract the set A of all the n known vulnerabilities

in our system (i.e. n = (|A|)). We choose the ai IDs in the first column of Table 4.1

to represent an attack (and, also use ai to denote the corresponding IDS that detects

this attack). Thus, n = 5 and the set A = {a1, a2, a3, a4, a5}. Note that this ID

encodes a two-tuple 〈MachineName, CVE-ID〉; multiple attacks corresponding to a

single machine, and similar vulnerabilities on different machines will each receive a

unique ID.

The defender D, as mentioned before, has a limited budget to place only k(< n)

IDS mechanisms due to resource constraints. Also, we assume that, due to privacy

constraints, D cannot place an IDS mechanism on the ‘SQL Server (M)’ (shown in

Figure 4.1). Thus, in our model, we disregard any vulnerabilities present on this

node. (Note that although our system can detect a class of vulnerabilities that trig-

ger NIDS alarms on the network interface G1 when they affect M, we exclude such

vulnerabilities from our example). Now, D has
(
n
k

)
ways in which it can deploy the

k IDSs. This is the action set of D. Formally, the defender’s action set is denoted by

the set AD = Ak = {S ∈ A : |S| = k}. In the running example, we will assume that

k = 2. Thus, the defender’s action set is:

{(a1, a2), (a1, a3), (a1, a4), (a1, a5), (a2, a3), (a2, a4), (a2, a5), (a3, a4), (a3, a5), (a4, a5)}

We assume a strong adversary who either knows or can find out all the attacks in our

system. Thus, the action set of the attacker is AA = A = {a1, a2, a3, a4, a5}.

In game theory, this action set is often referred to as the set of pure strategies,

where each action (either a placement strategy or an attack) is a pure strategy (for
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D or A respectively). As stated earlier, if a defender chooses a pure strategy, i.e, any

one out of the ten pure strategies shown, to deploy k IDS systems, the attacker, with

reconnaissance on its side, will eventually figure out D’s strategy and start choosing

attacks that do not trigger these alarms. In order to address this limitation, the

defender can play a mixed strategy, i.e. have a probability associated with playing

each pure strategy and at the start of each round pick one by randomly sampling a

pure strategy from the set of pure strategies. Note that this is similar to applying the

concept of Moving Target Defense where the defender chooses to switch randomly

among the different deployment configurations (i.e. by choosing one of the ten IDS

placements in our case) at the start of each time period.

Common Vulnerability Scoring System (CVSS) As already discussed in

Chapter 3, the CVSS metric provides two quantitative scores for each CVE present

in our system–(1) the Impact Score (IS) that represents the effect a particular at-

tack has on the Confidentiality, Integrity, and Availability of a system and (2) the

Exploitability Score (ES), which encodes the complexity of actually exploiting a par-

ticular vulnerability. The system defines a way to combine both of these scores to

calculate a third score, known as the Base Score (BS) that tries to consider both the

impact of an attack vs. the difficulty in exploiting it.

The CVSS scores thus leverages the knowledge of cybersecurity experts across

the globe to provide a numerical value corresponding to each (known) vulnerability

that reflects its severity and expertise necessary to exploit it. We, inspired by other

research work before us [19, 50, 20], use the CVSS to calibrate the reward values of

our game.
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Stackelberg Games

Having defined the players and their action (or pure strategy) sets, there are additional

real-world aspects that we want to incorporate in the formulation of our game. One

such aspect is that the defender, who hosts the system that an attacker attacks, plays

first. To accurately model this scenario, we use the concept of Stackelberg games in

which one player (D) acts before the other player (A) plays and find the Stackelberg

Equilibrium of these games, in which the leader’s (D) strategy is contingent upon the

fact that the follower (A) can observe D’s strategy and play accordingly. Thus, in

this adversarial leader-follower game, D can simulate A in their mind and decide on

a mixed strategy that gives it the highest utility keeping in mind (that a rational)

A will choose the best action (∈ AA), i.e. the action that maximizes A’s reward, in

response.

Utility Modeling

Having designed the action sets of both the players, we can now specify the utilities

for both the players when each of them commits to a pure strategy. Given |AD| =
(
n
k

)

and |AA| =
(
n
k

)
, to enumerate all the utility values for our normal-form game we

would have to specify 2 ·
(
n
k

)
· n values corresponding to the reward values for each of

the players D and A. With this general reward structure, finding the mixed-strategy

Stackelberg equilibrium of this game would be computationally inefficient, specifically

O(
(
n
k

)
) [62]. Thus, we now resort to a more restrictive reward structure that lets us

efficiently compute the equilibrium strategy while being able to capture all the aspects

of our problem.

For each attack a ∈ A, if D places an IDS to detect it, we will say that D covers it.

Otherwise, we say that A is left uncovered. Since the defender can allocate only IDS
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resources to cover k elements in A, the remaining n−k attacks will remain uncovered

at any point in time. We will now decompose the reward structure of this game and

define four types of utility values corresponding to each attack a ∈ A.

〈RDc,a, RDu,a, RAc,a, RAu,a〉

where RDc,a and RDu,a denotes the utilities that a defender gets for covering and not

covering an attack A respectively. Similarly, RAc,a and RAu,a represent the utility an

attacker gets when they use an attack A that is covered (and thus gets detected) or

not covered (and thus avoids detection) respectively. The values for these symbols are

obtained by leveraging the knowledge of security experts as encoded in the Common

Vulnerabilities Scoring System (CVSS) [100] and the realistic costs of deploying IDSs.

For each attack ai in the set of attack actions A, we will represent these scores as

ISai , ESai and BSai using CVSS metrics, previously discussed in Sec. 4.1.1.

Cost of deploying IDS. We denote the cost of deploying an IDS corresponding

to an attack a ∈ A as ĉa. For our example, we assume the cost of deploying an

IDS (shown in the IOC column of table 4.1) to be proportional to the betweenness

centrality of the VMs on which the IDS is deployed because a VM with high between-

ness centrality will affect the latency of routing packets or the latency of processing

a request. Also, the centrality values are normalized in the interval [0, 10] to be com-

parable to the CVSS metrics ISa, ESa and BSa as discussed in Sec. 4.1.1. Note that

the model proposed allows another user to define ĉa in a different way.

We now leverage these defined metrics to design the following rewards for the four

utilities associated with each attack A present in our system,

RDc,a = −1 ∗ ĉa , RDu,a = −1 ∗ ISa

RAc,a = −1 ∗ ESa , RAu,a = +1 ∗BSa
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We now provide the rationale for modeling the rewards in this particular manner.

The value of RDc,a is negative since even if it detected an attack, it incurred a cost

in order to detect it, and moreover, there is no extra positive reward given to D for

protecting their system, which is supposed to be the primary functionality. When D

does not place an IDS for detecting the attack A, it incurs a negative utility (RDu,a)

equal to ISa if the attacker uses attack A.

For the attacker A, if it chooses an attack action A which the defender covers (i.e.

can detect), it gets a negative utility RAc,a proportional to the time and cost it had to

invest in doing it, which is (somewhat) measured by ES. Also, as A gains nothing by

doing this attack (since the defender can deploy a countermeasure on detection [24]),

no positive value is added to it. Lastly, when the attacker uses an attack for which

the defender has not placed an IDS, we give a positive utility that (conceptually)

adds the IS and subtracts the cost (ES) of performing the attack. Since BS already

captures this trade-off, we use it directly.

4.1.2 Solution Concepts

We need to solve for the Stackelberg Equilibrium of our game to obtain probability

values for each configuration mentioned in Ak, where Ak ⊂ A such that |Ak| = k.

Unfortunately, since there are
(
n
k

)
such probabilities (corresponding to each element in

Ak), solving for all these variables at once will not yield an efficient solution. Instead,

we will solve for the probabilities pa which represents the probability that a certain

attack a ∈ A is covered by an IDS in a round.

To that extent, we first describe a method that can help in generating the marginal

strategies for the defender by solving n (= |AA|) Linear Programs. Note that the

solution can be found in polynomial time in our case because of the particular reward
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structure our game has. Then, we shall propose an efficient Mixed-Integer Quadratic

Program (MIQP) method based on this method that helps us to obtain the same

marginal strategy, but by solving just one optimization problem. We show that,

although this formulation in the general case is known to be computationally hard,

in our case can be solved by using a branch-and-cut mechanism in polynomial time.

Multiple LP method

Let us first define the notion of a token that can be allocated to an attack. When a

token is to an attack a, it implies that D has deployed an IDS that can detect this

particular attack. Let T denote the set of k tokens that the defender D can allocate

to cover k of the n attacks. Now, let the variables pa represent the probability

with which an attack a is covered by one of the k tokens and pa,t represent the

probability with which a particular attack a is covered by a particular token t ∈

T . Having defined the probabilities pa, the defender’s expected utility for deploying

an IDS to detect a particular attack a∗ should be RDu,a∗ ∗ (1 − pa∗) + RDc,a∗ ∗ pa∗

[101, 102]. Note that, for our scenario, this does not capture the cost D incurs in

deploying the other k− 1 IDS mechanisms. Thus, we modify the defender’s utility to

RDu,a∗ ∗ (1− pa∗) + 1
k

∑
a∈AR

D
c,a ∗ pa, where the second term denotes the average cost

for a particular deployment configuration.

On the other hand, we can simply define the attacker’s expected utility for using

a particular attack a as RAc,a ∗ pa +RAu,a ∗ (1− pa). We now present the optimization

problem that maximizes the defender’s objective function and the attacker’s utility

given that an attacker chooses to use the attack a∗.

max α · 1

k

∑

a∈A

RDc,apa + (1− α) ·RDu,a∗(1− pa∗) (4.1)

s.t. pa ∈ [0, 1] ∀ a ∈ A
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pt,a ∈ [0, 1] ∀ a ∈ A, t ∈ T
∑

a∈A

pt,a = 1 ∀ t ∈ T
∑

t∈T

pt,a = pa ∀ a ∈ A

RAc,apa +RAu,a(1− pa) ≤ RAc,a∗pa∗ +RAu,a∗(1− pa∗)

where α is an input parameter that allows the defender to trade the performance

of the system with respect to the security of the system (and vice versa). In the

extreme case when α = 0, the defender optimizes only for security and completely

ignores the fact that deploying k IDSs might affect the performance of the system;

as shown in subsection 4.2.3, D ends up moving between a larger number of IDS

deployment configurations. On the other hand, when α = 1, the defender optimizes

for performance, hardly placing an IDS on systems that affect performance even when

such a choice is detrimental to security. We discuss the effects of selecting various α-s

in subsection 4.2.3.

Before we dive into what the constraints mean, note that this is a Linear Program

(LP) and thus, can be solved in polynomial time. The first two sets of constraints

ensure that the optimization variables pa and pt,a are valid probabilities. The third

set of constraints ensures that all the tokens are utilized in covering the different

attacks in A. The equality of this constraint is possible in our case since (1) all our

tokens are homogeneous, i.e. any token t ∈ T can be used to cover any attack a ∈ A

and (2) the number of tokens k (= |T |) is less than the number of attacks n (= |AA|).

Thus, we prune away solutions that do not fully utilize all the tokens. The fourth

set of constraints ensure that the probabilities of allocating various tokens to cover

an attack A add up to the probability that A is covered. The final set of constraints

ensure that the attacker selecting a∗ maximizes their utility. Lastly, note that given

the values of pt,a one can easily obtain pa using the fourth set of constraints.
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To obtain the (globally) optimal solution (and thus find the optimal marginal

strategy) for the defender, we can iterate over all the n attack choices made by the

attacker and pick the solution that maximizes D’s utility. Note that, here we enforce

the attacker to select a pure strategy as opposed to a mixed strategy. This is not

a limitation since for any mixed strategy the attacker can pick in this Stackelberg

Game, there always exists a pure strategy in support of it [103].

As the number of VMs and vulnerabilities, i.e., n, increase, this solution method

needs to solve a large number of LPs. Thus, we now propose an efficient MIQP that

finds the solution in one go and provides an efficient branch-and-cut algorithm for

solving it in polynomial time.

Compiling Multiple LPs into an Efficient Mixed-Integer Quadratic Pro-

gram (MIQP)

Now, we first introduce n binary switch variables, one for each attack a ∈ A and

represent it as wa. When the attacker exploits vulnerability A (i.e. uses the attack

action A), wa = 1. Otherwise, wa = 0. We now propose the following optimization

problem,

max α · 1

k

∑

a∈A

RDc,apa + (1− α) · wa ∗RDu,a(1− pa) (4.2)

s.t. wa ∈ {0, 1} ∀ a ∈ A

pa ∈ [0, 1] ∀ a ∈ A

pt,a ∈ [0, 1] ∀ a ∈ A, t ∈ T
∑

a∈A

wa = 1

∑

a∈A

pt,a = 1 ∀ t ∈ T
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wa1 = 0 wa1 = 1

wa2 = 0 wa2 = 1

wan−1 = 0 wan−1 = 1

wan = 1

Figure 4.2: The branching tree for the proposed MIQP.

∑

t∈T

pt,a = pa ∀ a ∈ A

0 ≤ va − (RAc,apa +RAu,a(1− pa)) ≤ (1− wa) ∗M ∀ a ∈ A

where M represents a large number with respect to the maximum reward the attacker

can get, i.e. M >> 10, and va is the utility value of the attacker at equilibrium. The

first constraint ensures that the switch variables are binary. The fourth constraint

enforces the attacker to select a pure strategy since the switch variable corresponding

to only one attack can be turned on in a feasible solution. As mentioned in the

previous section, this is not a limiting assumption. Lastly, the final set of constraints

encodes the complementary slackness condition of the attacker’s utility maximization

problem [103].

As the defender plays first, it can reason about the attacker picking each attack

and select the strategy which gives D the maximum reward. If the attacker responds

to the defender’s strategy with attack a∗, then wa∗ = 1. In that case, the RHS of the

last constraint (with a∗) becomes zero and along with the LHS, equality holds. Thus,

va∗ is A’s utility value. For all the other attacks a(6= a∗) that were not selected by A,

both the inequalities can be trivially satisfied (as M is a large number) by selecting

an appropriate value for va.
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Theorem 4.1.1. MIQP defined in Equation 4.5 produces the same solution as the

set of LPs described in equation Equation 4.1.

Proof. Let us say that when attacker selects an attack a1, the defender gets the

highest utility as per Equation 4.1. Now, let us say that Equation 4.5 decides that the

defender’s utility is strictly better when attacker selects any another attack a2(6= a1),

and thus, wa2 = 1. Notice that if this is true, then the objective function value of

LP when a∗ = a2 is strictly greater than the objective function value of the LP with

a∗ = a1. But that is a contradiction. Hence, the MIQP defined in Equation 4.5 must

select a1 for the attacker.

Similarly, we can prove the other way–that a solution that is optimal for the MIQP

(Equation 4.5) is also optimal for the LP case.

Theorem 4.1.2. MIQP defined in Equation 4.5 can be solved in polynomial time

with the branch-and-cut method.

Proof. To prove this, we first represent the branch-and-cut tree for our MIQP in

Figure 4.2. In that, notice that the right children (shown in red) correspond to an LP

problem (similar to the one defined in Equation 4.1) where only a particular attack

ai is selected (wai = 1) and other attacks are not used by the attacker. Since no

children of any right child (red node) can generate another solution, the search tree

below them can be pruned away. Now, the tree can have at most n− 1 left children

which correspond to at most n right children, which in turn corresponds to at most

n LP problems that need to be solved. Since each LP can be solved in polynomial

time and we will solve no more than n LPs, this MIQP can be solved in polynomial

time.
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Attack a1 a2 a3 a4 a5

RDc,a -5.7 -10.0 0.0 0.0 0.0

RDu,a -6.4 -6.4 -2.9 -6.4 -2.9

RAc,a -8.6 -10 -8.6 -10 -10

RAu,a 6.8 7.5 4.3 7.5 5.0

Table 4.2: Player utilities for each vul-

nerability depending on whether an IDS

is deployed (or not) to detect the attacks

that exploit it.

t1 t2

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

t1 0 0.44 0 0.22 0.34

t2 0.45 0 0.34 0.21 0

Table 4.3: Probability of allocating a

token (that indicates whether the cor-

responding IDS should be deployed)

for detecting each attack.

Obtaining Implementable Strategies

Although we have obtained the values pa and pt,a, there are no guarantees that we

will be able to convert these marginal probabilities into
(
n
k

)
probability values that

correspond to a defender’s deployment strategies, i.e. one that can be implemented in

practice. In order to convert these into implementable strategies, we use the general

version of the Birkhoff Von-Neumann Theorem as stated in [102]. We state this here

for completeness.

Birkhoff Von-Neumann Theorem. Consider an k×n matrix P with real numbers

pt,a ∈ [0, 1], such that for each 1 ≤ t ≤ k,
∑n

a=1 pt,a ≤ 1, and for each 1 ≤ a ≤ n,

∑k
t=1 pt,a ≤ 1. Then, there exist matrices P 1, P 2, . . . , P q and weights w1, w2, . . . , wq ∈

(0, 1], such that (1)
∑q

x=1w
x = 1; (2)

∑q
x=1w

xP x = M ; (3) for each 1 ≤ x ≤ q,

the elements of Mx are pxt,a ∈ {0, 1} and (4) for each 1 ≤ x ≤ q, we have for each

1 ≤ t ≤ k,
∑n

a=1 p
x
t,a ≤ 1 and for each 1 ≤ a ≤ n,

∑k
t=1 p

x
t,a ≤ 1.
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D{a2, a3}

{a2, a4}

{a2, a5}

{a3, a4}

{a3, a5}

{a1, a2}

{a1, a4}

{a1, a5}

0.124

0.118

0.092
0.112

0.096

0.101

0.195
0.153

t1

t2

a1

a2

a3

a4

a5

a1 a2 a3 a4 a5

t1 0 1 0 0 0

t2 0 0 0 0 1

a1 a2 a3 a4 a5

0 1 0 0 1

Figure 4.3: Optimal mixed strategy of the defender for our scenario when α = 0.1.

The probability values for picking up one of the eight IDS placements at the start of

each round are written on the edges. For the strategy {a2, a5}, the allocation matrix

is shown on the right.

This theorem guarantees that given the probability matrix pt,a, we can always

obtain the probabilities of the
(
n
k

)
implementable strategies. The third and fourth

equalities in the optimization problem in Equation 4.1 ensure that the constraint

structure imposed on P is a bi-hierarchy, which authors in [104] show as a sufficient

condition for any marginal probability matrix P to be implementable.

For our example, assuming that the cost associated with deploying each IDS on a

certain VM is a function of the latency it creates. Furthermore, since VMs that are
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responsible for communication between other VMs would impact the latency the most

when an IDS is placed on it. Thus, we assume time impact on the overall latency of

the system is equal to the normalized and scaled betweenness centrality of the nodes

in our network (∈ [0, 10]). With that, the utility values for the attacker and defender

are shown in Table 4.2. We first use these values to solve for the optimal marginal

strategy (shown in Table 4.3) using the MIQP described in Equation 4.5. We then

use Theorem 1 to obtain the mixed strategies that the defender can actually use to

deploy the IDS systems (shown in Figure 4.3).

Identifying the Most Critical Vulnerability

In real-world scenarios, system administrators, who have a list of known vulnerabili-

ties it should address, have limited developer resources to fix all of the known CVEs

in their system at once. Thus, the question of which vulnerability they should fix in

order to improve the security of the system is a critical one. In our case, since (1)

the rewards of the formulated game are not zero-sum and (2) the defender wants to

balance a multi-objective function (that tries to balance the security and usability

metrics), figuring out the (critical) vulnerability that D needs to fix become even

more difficult.

Given that we can find the utilities for the defender using Equation 4.5, we can

ask the question which attack A when removed would produce the maximum utility

for D? A simple algorithm would be to iterate over all the attacks, removing them

one by one, reformulating the MIQP, and selecting the attack that maximizes the

defender’s utility when removed. We describe this idea formally in Algorithm 1 and

use it to find the most critical vulnerability of our system. 1 The utilities obtained

1Note that if we follow this method, we would need to solve
(
n
f

)
MILPs (or

(
n
f

)
· n LPs) if the

defender has resources to fix f vulnerabilities at one go.
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Algorithm 1 Algorithm to find the most critical vulnerability in the Defender’s

system that upon patching results in the highest defender utility.

1: procedure Given Utility Matrix,

2: Output(a∗ – the most critical vulnerability that results in the highest defender

utility when fixed)

3: max def util ← −∞

4: a∗ ← None

5: while a ∈ A do

6: A′ ← A \ a

7: obj val, ← solve MIQP in Equation 4.5 with action set A′

8: if obj val > max def util then

9: max def util ← obj val

10: a∗ ← a

11: end if

12: end while

13: return a∗

14: end procedure

by removing one vulnerability at a time are shown below (for α = 0.1).

〈a1 : −1.90; a2 : −1.70; a3 : −2.30; a4 : −2.23; a5 : −2.27〉

Thus, in our system, a2 is the most critical vulnerability since fixing a2 will result in

the highest (gain in) defender’s utility.
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Strategy a1 a2 a3 a4 a5

URS 0.4 0.4 0.4 0.4 0.4

DPS 1 1 0 0 0

CBS 0.52 0.73 0.25 0.25 0.25

Figure 4.4: The marginal probabilities, associated with different movement strategies,

with which an IDS is placed to detect an attack.

4.1.3 Experimental Results

We present the results of two different experiments– (1) comparison of our place-

ment strategy (Fig. 3) with existing approaches, and (2) implementation of the

Stackelberg Game Strategy (SGS) on a small-scale cloud network instance.

Comparison with Existing Strategies

In this section, we compare our approach to three other MTD strategies in the context

of our running example where n = 5 and k = 2–

(1) Deterministic Pure Strategy (DPS). This strategy selects a single pure strategy

out of the
(

5
2

)
placement strategies. As per work by [94], for DPS, we place IDS

to detect a1 and a2 (since G1 and G2 are the most critical VMs), which are on the

critical paths for any attack flow. Note that, in the context of a stealthy attacker

who can exploit any vulnerability in the system, the definition of a critical node, on

which an IDS can be deployed, is not clear. Thus, DPS has an inherent disadvantage

when compared to MTD strategies, which we now describe.
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(2) Uniform Random Strategy (URS). In this case, we select each of the
(

5
2

)
placements

or pure strategies with an equal probability of 0.1. In this case, each attack A is

covered in four (out of the ten) pure strategies since having placed an IDS (or token

which denotes an IDS was placed) for A, there are
(

4
1

)
= 4 ways of placing the other

token. Thus, the marginal probabilities are 0.1 ∗ 4 = 0.4.

(3) Centrality Based Strategy (CBS). This strategy, motivated in the work by [34], has

previously been shown to be effective for detecting stealthy bot-nets when PageRank

is used as a centrality measure. Since our network is an undirected graph, we use

the betweenness centrality measure for evaluation. Since only two of our nodes (G1

and G2) have non-zero values for betweenness centrality, we switch between seven

of the ten configurations– three in which only a1 is covered, three in which only a2

is covered and one in which both a1 and a2 are covered. Since G1, on which a1 is

present has a lower centrality value in comparison to G2, on which a2 is present, the

first three configurations are less likely than the next three. The last configuration,

in which both a1 and a2 are covered, is the most likely configuration. The marginal

probabilities for covering each attack in the system, as per this strategy, are shown

in Figure 4.4.

Effectiveness of Our Approach We plot the defender’s utility value for our ap-

proach and compare it to all the other approaches. The results are shown in Fig-

ure 4.11. When adversaries are strategic, i.e. can reason about defender strategies

and act rationally to maximize their utility, our method clearly dominates the other

methods (see the plots for CBS(min), URS(min) and DPS).

On the other hand, if the attacker is irrational, i.e., selects attacks that do not

maximize their profit, Stackelberg Equilibrium may not always be the best strategy.

74



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−8

−6

−4

−2

0

α→

D
ef

en
d

er
’s

u
ti

li
ty

SGS

URS(min)

URS(max)

CBS(min)

CBS(max)

DPS

Figure 4.5: Defender’s utility for the various movement strategies as the parameter

α, which represents the security-usability trade-off, varies from zero to one.

We plot the best case for the other MTD strategies (see URS(max) and CBS(max))

and it turns out that only URS is a little better when α ∈ (0, 0.37]. In this range,

our algorithm selects nodes with high centrality measures to improve security in the

case of a strategic attacker. This increases the deployment cost and reduces the

multi-objective function value, letting URS dominate. CBS on the other hand with

no information about the known attacks or performance costs, switches only among

the useless and performance expensive configurations, being strictly dominated by

SGS. Note that none of the mechanisms we compare against adapt to the security

and performance trade-off that is important to the defender. Thus, as the value

of α changes, the marginal probabilities for selecting nodes using CBS, URS, or

DPS remain constant, resulting in straight-line plots. On the other hand, SGS, our

intelligent switching mechanism, solves the multi-objective optimization when coming

up with its mixed strategy.

When α is low (i.e. ∈ [0, 0.29]), our method switches among eight out of the ten

pure strategies. As α increases further and the costs start to matter, it places IDS
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Figure 4.6: Testing bandwidth on a flat network with 15 virtual machines and various

Network and Host Intrusion Detection Systems.

systems more on nodes that impact performance the least. Beyond a certain value

(when α > 0.76) it realizes that the cost of placing IDS on G1 and G2 (for detecting

a1 and a2) are extremely high on the performance of the system and sticks to only

(three) strategies where neither G1 nor G2 is covered.

Testing on a Real-world Cloud Network

The setup comprised of 15 VMs and 42 CVEs distributed uniformly on a flat network

10.0.0.0/24, as shown in the Figure 4.6. In this experiment, we will measure the

throughput for the server (10.0.0.15) hosting an ssh application on port 5002 as the

number of IDS systems placed increases. We now describe the different NIDS and

HIDS agents pre-configured on the system with the known attack signatures to detect

the intrusion attempts.
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Figure 4.7: Change in throughput of the

flat network as the number of NIDS and

HIDS deployed increases.

Figure 4.8: Change in defender’s utility

value as the number of NIDS and HIDS

deployed increases.

Network-based IDS Snort [97] was configured to run in IDS (intrusion-detection)

as well as IPS (intrusion-prevention) mode. For instance, the attack signature below

checks the payload for shell-code targeting remote buffer overflow vulnerability on ssh

service running on port 5022.

1 alert TCP any any -> 10.0.0.15 5002 (msg:" EXPLOIT ssh remote

overflow "; content :"/bin/sh"; reference:Bugtraq ,2347; reference:

cve ,2008 -5161; sid :1324; rev :6;)

The AF packet, which is an IPS configuration, creates a bridge between inspected

interfaces (e.g., h1-eth1:s1-eth1). This leads to increased packet processing latency

since each packet on a particular bridge is inspected against all traffic patterns which

are part of signatures.

Host-based IDS auditd [105] was configured to monitor file integrity of configu-

ration files such as /etc/sshd conf and binary files for vulnerable services present on
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the network. A daemon was configured on each inspected host to generate an alert if

there is a change in the hash value of inspected files.

The goal of this experiment was to measure the impact of the HIDS/NIDS deploy-

ment on the throughput of the service being accessed by normal users. We show that

as D places more IDSs (1 to 15), we observe a substantial drop in the throughput of

the system from 18 Gbps to 6 Gbps (see Figure 4.7). This shows that the deployment

of IDS without considering the impact on network latency can affect the Quality of

Service (QoS) for legitimate users in a cloud network.

In Figure 4.8, we vary the number of IDS systems placed in the system and see

how the defender utilities vary. Initially, as the number of IDS increases from 2 to 17,

the defender’s utility increases at a slow rate since there are too few IDS systems to

detect attacks on all the 42 vulnerabilities. As the number of IDS systems is increased

beyond 18, the defender’s utility starts to increase substantially in each step. At this

point, if the attacker does not pick their attack strategically, it is detected with high

probability. However, the placement of IDSs beyond a certain threshold– 29 as shown

in the Figure 4.8– results in a substantial decrease in throughput, outweighing the

benefits of security provided by IDS.

We will now consider an even more pragmatic threat model where an attacker

can plan and execute a multi-step attack. We allow a defender’s sensor model and

an attacker’s attack execution to be imperfect. Under these conditions, we will show

how one can find the optimal movement strategy.
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4.2 Movement Strategies against Multi-Stage Attacks

In the case of real-world cloud-systems, the solution discussed in Section 4.1 leads

to three problems. First, only single-step attacks are considered in the game-theoretic

modeling which leads to sub-optimal strategies because such models fail to account for

multi-stage attack behavior. For example, strategies generated by prior work may pri-

oritize detecting a high-impact attack on a web-server more than a low-impact attack

on a path that leads an attack on a storage server, which when exploited may have

major consequences. Second, the threat model assumes that an attacker can launch

an attack from any node in the cloud network. This is too strong an assumption,

leading to sub-optimal placement strategies (that are too conservative) in real-world

settings. Third, existing methods can come up with placement strategies that allo-

cate multiple detection systems on a sub-net while another sub-net is not monitored.

This results in a steep degradation of performance for some customers. To address

these challenges, we need a suitable method for modeling multi-stage attacks. Unfor-

tunately, capturing all possible attack paths can lead to a combinatorial explosion of

the pure-strategy set AA. Thus, we use Markov Games to model such interactions.

Specifically, we try to address these problems by modeling the cloud system as a

General-Sum Markov Game. We use particular nodes of our system’s attack graph

to represent the states of our game. Similar to the works discussed previously, the

attacker’s actions are modeled after real-world attacks based on the Common Vul-

nerabilities and Exploits (CVEs) described in the National Vulnerability Database

(NVD) [106] while the defender’s actions correspond to the placement of detection

systems that can detect the attacks. The utility values for each player in this game

are obtained by leveraging (1) the CVSS metrics corresponding to known attack ac-

tions (similar to previous work), and (2) cloud designer’s quantification of how the
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placement of a detection system impacts the performance. These help us come up

with defense strategies that take into account the long-term impacts of a multi-stage

attack while restricting the defender to pick a limited number of monitoring actions

in each part of the cloud. The latter constraints ensure that the performance impact

on a customer, due to the placement of detection measures, is limited.

The popular notion of using min-max equilibrium for Markov Games [107] results

in an optimal strategy for the players in zero-sum games but, may yield sub-optimal

policies if the rewards have a general-sum structure. Given that an attacker is (even-

tually) aware of the defender’s placement strategy (in each state of our Markov game)

in our threat model, we consider the notion of Strong Stackelberg Equilibrium of this

game. In scenarios where this assumption becomes too strong, we show that the Stack-

elberg Equilibrium of our general-sum game, depending on the problem structure, is

a subset of Nash Equilibrium. Thus, it still results in good movement strategies. In

summary, we make the following contributions.

• We model the multi-stage attack scenarios, which are typically employed in

launching Advanced Persistent Threats (APTs) campaigns against high-value

targets, as a general-sum Markov Game. The cost-benefit analysis based on

the two-player game provides strategies for placing detection systems in a cloud

network.

• We leverage the attack-graph modeling of cloud networks, the Common Vulner-

abilities and Exposures (CVEs) present in the National Vulnerability Database

and the Common Vulnerability Scoring Service (CVSS) to design the states,

the actions and utility values of our game. In addition, we consider metrics

discussed in the context of cloud-systems to (1) model the uncertainty of an at-
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tack’s success and (2) leverage heuristic measures that model the performance

impact of placing detection mechanisms on the cloud.

• Our framework considers a threat model where the attacker can infer the de-

fender’s detection strategy. Therefore, we design a dynamic programming solu-

tion to find the Stackelberg equilibrium of the Markov Game. If an attacker does

not have information about the defender’s strategy, we show that the Stackel-

berg equilibrium of the general-sum Markov Game is a subset of Nash Equilib-

rium given a set of properties are satisfied (similar to prior work in normal-form

games [108]). In order to showcase the effectiveness of our approach, we analyze

a synthetic and a real-world cloud system.

4.2.1 Background

In this section, we first introduce the reader to the notion of real-world vulnera-

bilities and exploits present in a cloud system that we will use throughout our paper.

Second, we describe the threat model for our cloud scenario. Lastly, we describe

the notion of Attack Graphs (AG) followed by a brief description of Markov games

and some well-known algorithms used to find the optimal policy or strategy for each

player. We will use the example attack scenario for cloud networks shown in Figure

4.9 as a running example in our discussion.

Vulnerabilities and Exploits

Software security is defined in terms of three characteristics - Confidentiality, Inte-

gration, and Availability [71]. Thus, in a broad sense, a vulnerability (that can be

attacked or exploited) for a cloud system can be defined as a security flaw in a soft-

ware service hosted over a given port. When exploited by a malicious attacker, it can
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Figure 4.9: An example cloud system highlighting its network structure, the attacker

and defender (admin) agents, the possible attacks, and monitoring mechanisms.

cause loss of Confidentiality, Availability, or Integrity (CIA) of that virtual machine

(VM). The National Vulnerability Database (NVD) is a public directory of known

vulnerabilities and exploits. It assigns each known attack a unique identifier (CVE-

id), describes the technology affected, and the attack behavior. Thus, to model the

known attacks against our system, we use the Common Vulnerabilities and Exposures

(CVEs) listed in NVD.

In the cloud-scenario described in Figure 4.9, we have three VMs– an LDAP server,

an FTP server, and a Web server. Each of these servers has a (set of) vulnerability

present on it. On the LDAP server, an attacker can use a local privilege escalation to

gain root privilege on it. The other two vulnerabilities– A cross-site scripting (XSS)

attack on the Web server and the remote code execution on the FTP server– can only
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be executed with root access to the LDAP server. We can now describe the threat

model for our scenario.

Threat Model

In the example cloud scenario, the attacker starts with user-level access to an LDAP

server. The terminal state is to compromise the FTP server (which, as we will see

later, leads to an all absorbing state in our Markov Game). The attacker can perform

actions such as 1: exploit-LDAP, exploit-Web or exploit-FTP. Note that the

attacker has two possible paths to reach the goal node, i.e. priv(attacker, (FTP:

root)) which are:

• Path 1: exploit-LDAP → exploit-FTP

• Path 2: exploit-LDAP → exploit-Web → exploit-FTP

On the other hand, the (network) Admin, who is the defender in our case, can choose

to monitor (1) read-write requests made by services running on a VM using host-based

Intrusion Detection Systems (IDS) like auditd, or (2) network traffic along both the

paths using the network-based monitoring agents like Snort. We will denote these

IDS systems using the terminology monitor-LDAP, monitor-FTP, etc. We assume

that the Admin has a limited budget, i.e., cannot place all possible IDS systems on

the cloud network, and thus, must try to perform monitoring in an optimized fashion.

On the other hand, the attacker will try to perform attacks along with some path that

minimizes their probability of getting detected. Further, we assume an attacker has

knowledge of the defender’s placement strategy because of the inherent reconnaissance

phase in cyber-security scenarios, thus rendering pure strategies for the placement of

detection systems useless. Thus, to come up with a good dynamic placement strategy,
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Figure 4.10: The left figure shows the attack graph of the synthetic cloud scenario

shown in Figure 4.9. The right figure shows the formulated Markov Game.

we need to model the various multi-attack paths and the attacker’s strategy. We first

discuss the formalism of Attack Graphs that are a popular way to model the various

attacks (and attack paths) in a cloud scenario [94, 24] and then give a brief overview

of two-player Markov Games.
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Attack Graph Formalism

Attack Graphs (AG) are a representation tool used to model the security scenario of

a complex network system like the cloud. Researchers have shown that AG can help

to model multi-stage or multi-hop attack behavior.

Attack Graph is a graph G = {N, E} that consists of a set of nodes (N) and a set

of edges (E) where,

• As shown in the Figure 4.10, nodes can be of four types– the nodes NC represent

vulnerabilities (shown as rectangles), e.g. vulExists (LDAP, Local Priv.

Escalation), ND represents the attacker’s state (shown as diamonds) e.g.,

priv(attacker, (LDAP :user)), rule nodes NR represent a particular exploit

action (shown as ellipses) and finally, root or goal nodes NG that represent

the goal of an attack scenario (shown using two concentric diamonds), e.g.,

priv(attacker, (FTP: root)).

• E = Epre × Epost denotes a set of directed edges in the graph. An edge e ∈ Epre
goes from a node in ND or NC to a rule node NR and denotes that an attack or

rule can only be triggered if all the conditions of the edges going into n ∈ NR

is satisfied (AND-nodes). An edge e ∈ Epost goes from a node NR to n ∈ ND

indicating the change in attacker’s privilege changes upon successful execution

of the rule.

Note how the two attack paths mentioned in the threat model section become

evident by a simple look at the AG. The conditional and cumulative probability

values pertaining to the success of an attack path over the AND (conjunct) and OR

(disjunct) nodes can be calculated using probability estimates as described in [109].
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Two-Player Markov Games

We now define a two-player Markov Game and also introduce the reader to some

notations used later in our modeling. We call the two players of this game the

Defender D (who is the Admin of the cloud system) and the Attacker A (who is an

adversary trying to exploit a vulnerability in the Cloud System). With that, we can

now formally define a Markov Game as follows.

Markov Game for two players D and A can be defined by the tuple

(S,M,E, τ, RD, RA, γD, γA) [110] where,

• S = {s1, s2, s3, . . . , sk} are finite states of the game,

• M = {m1,m2, . . . ,mn} is the finite set of monitoring actions for D,

• E = {e1, e2, . . . , en′} is the finite set of (exploit) actions available to A,

• τ(s,mi, ej, s
′) represents the probability of reaching a state s′ ∈ S from the

state s ∈ S if D chooses to deploy the monitoring mi and A chooses to use the

exploit ej,

• U i(s,mi, ej) represents the reward obtained by player i(= A or D) if in state s,

D choose to deploy the monitoring mi and A choose to use the exploit ej,

• γi 7→ [0, 1) is the discount factor for player i(= A or D).

In light of recent studies on characterizing attackers based on personality traits

[111], one might argue that a defender’s perspective of long term rewards is different

from that of an attacker. Given that we did not find a formal model or user study

clearly stating how these differ, we will consider γA = γD = γ going forward. As
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the solvers for our formulated game can work in cases even when γA 6= γD, this

assumption just helps us simplify the notations.

The concept of an optimal policy in this Markov game is well-defined for zero-sum

games [107] where RD(s,mi, ej) = −RA(s,mi, ej) ∀ s ∈ S,mi ∈ M, and ej ∈ E.

In these cases, a small modification to the Value Iteration algorithm can be used to

compute the min-max strategy for both players. To see this, note that the Q-value

update for this Markov Game (for player p) becomes as follows,

Qp(s,mi, ej) = Rp(s,mi, ej) + γ
∑

s′

τ(s,mi, ej, s
′) · V p(s′) (4.3)

where V p(s′) denotes the value function (or reward-to-go) with respect to player p if

in state s′. We will use the notation M(s) (and E(s)) to denote the set of defender

actions (and attacker actions) possible in state s. Given this, the mixed policy x

for state s, denoted as x(s), over the defender’s applicable actions (∈ M(s)) can be

computed using the value-update,

V D(s) = max
x(s)

min
ej

∑

mi

QD(s,mi, ej) · x(s)mi (4.4)

where x(s)mi denotes the probability of choosing the monitoring action mi in state s.

When the Markov Game has a general-sum reward structure and one player can

infer the other player’s strategy before making their move, the min-max strategy

becomes sub-optimal and one must consider other notions of equilibrium [64, 112].

We give an overview of prior work on these lines later in the paper.

Quantifying the Impact of Vulnerabilities

As discussed earlier in this chapter, we will use the Common Vulnerability Scoring

System (CVSS) for rating the impact of attacks. For the set of vulnerabilities present

in our system, the values of the two metrics are shown in Table 4.4.
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VM Vulnerability CVE
CIA

Impact

Attack

Complexity

LDAP Local Priv Esc CVE-2016-5195 5.0 MEDIUM

Web Server (WS) Cross Site Scripting CVE-2017-5095 7.0 EASY

FTP Remote Code Exec. CVE-2015-3306 10.0 MEDIUM

Table 4.4: Vulnerability Information for the Cloud Network.

4.2.2 Markov Game Modeling

Before discussing the game-theoretic formulation in detail, we highlight a few

important assumptions. Besides the Markovian assumption, we assume that (1) there

is a list of attacks known to both the attacker and the defender (which cannot be

immediately fixed either due to lack of resources or restrictions imposed by third-party

customers who host their code on the cloud system [14, 35]) and (2) the attacker may

reside in the system but will remain undetected until it attempts to exploit an existing

vulnerability, i.e. a stealthy adversary [34]. These assumptions force our formulation

to (1) only deal with known attacks and, (2) come up with good strategies for placing

detection mechanisms. The latter is a result of ignoring the partial observability

inherent in the problem [51, 52] to come up with scalable solutions, necessary for

cloud networks.

States The state of our Markov Game (MG) are derived using the nodes ND and

NG of an Attack Graph (AG) (the diamond-shaped nodes are mapped to the circular

nodes in Figure 4.10). These nodes in the AG represent the state of an attacker in

the cloud system, i.e. the attacker’s position, and their privilege level. The goal node
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NG of an AG is mapped to a terminal self-absorbing state in our MG while the other

nodes ND represent non-terminal game states. Note that the location of an attacker

on multiple physical servers in the cloud network can map to a single state of the AG

(and therefore, a single state in our MG). The MG states that map to a goal or a root

node NG of an AG is the terminal self-absorbing states. Among these non-terminal

states there exist a set of states Si that represent the external-facing entry-points to

the cloud network, the initial state of any multi-stage attack.

For the cloud scenario shown in Figure 4.9, we have four states. The state s0

corresponds to the goal node A-{FTP:root} and is a terminal state of the MG. The

state s1(⊂ Si) corresponds to the state where an attack originates while the two states

s2 and s3 correspond to nodes where the attacker has different access privileges on

the three servers (LDAP, WS, and FTP) server. Given that we use a ternary range

to denote an adversary’s privilege– no-access, user or root-user– on each server, there

can be a maximum of nine states (# servers × # access-levels) 2 in the AG and

hence, in our MG. Note that given a set of known attacks, the number of states is

often much less (four vs. nine for our scenario) because most of the states are not

reachable from the states in Si.

Players and Pure Strategies As mentioned above, the players for our game are

the Admin (or the defender) D and the attacker A. The pure strategy set for A

in state s consists of exploit actions they can perform with the privilege they have

in state s. For example, consider s2 where the he attacker has the access vector

A-{LDAP:root, FTP:user, WS:user}. With this as the precondition, the attack

actions can be represented by the rule nodes NR (shown in oval) in the AG. Note

2Partial observability over the state space can increase the number of states to be a power-set of
this number, i.e. 2(# servers×# access-levels)
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that there is always a vulnerability node ∈ NC associated with a rule node and thus,

with each action.

The pure strategy set for D in a state s consists of monitoring actions where each

such action corresponds to placing an Intrusion Detection System (IDS) for detecting

attacks that can be executed by A in state s. These actions are made possible in

real-world scenarios by using two sorts of IDS systems– (1) host-based IDS like auditd

that can notify D about an abnormality in the use of CPU resources or access to files

on the server and (2) network-based IDS like snort that can observe traffic on the

wire and report the use of unexpected bit patterns in the header or body of a packet.

Although a pure strategy for D can only detect a single attack in our simple example,

it is possible that a set of detection systems, capable of detecting multiple attacks,

is considered a pure strategy. We will see this in the case of the real-world cloud

scenario discussed in the experimental section. In the context of Stackelberg Security

Games, such groups of actions are often called schedules [102, 103], and the pure

strategy is defined over these schedules. We note that our modeling supports such

representations. 3

To allow for a realistic setting, we add one more action to the pure strategy set

of each player–no-act and no-mon. These represent the no-op for each player which

allows an attacker to not attack in a particular state if it feels that there is a high

risk of getting caught. Similarly, this allows a defender to not monitor for an attack

thereby saving valuable resources.

3In these cases, the Subset of Sets are Sets (SSAS) property defined in [108] may not hold and
thus, the Strong Stackelberg Equilibrium will not always be a Nash Equilibrium for the formulated
Markov Game (see later (Lemma 1 ) for details).
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Transitions The transitions in our MG represent that given a particular state and

a pair of actions drawn from the joint action space E×M , the probability with which

a game reaches a state s′, i.e. τ(s,m, e, s′). There exists a few obvious constraints in

the context of our MG– (1) τ(s,m, no-act, s) = 1, i.e. if an attacker does not execute

an attack, the game remains in the same state, (2) when e 6= no-act, τ(s,me, e, s
′) =

p/|Si| ∀s′ ∈ Si where p is the probability that e is detected by me, the monitoring

service deployed to detect e, i.e. when successfully detected, the attacker starts from

either of the initial states with equal probability, and (3) τ(s, no-mon, e, s′) 6= 0 if

s 6∈ Si and s′ ∈ Si, i.e. an attacker cannot be detected if the defender does not

perform a monitoring action.

We highlight a few transitions for our Markov Game in Figure 4.10. In state s1,

the defender does not monitor the exp-LDAP attack action and with 0.6 probability

the game moves to the state s2 (and with 0.4 it remains in s1). These probability

are calculated using the Access Complexity vector and the function defined in [109]

for obtaining the probability of success given an attack. This is also done when the

defender deploys a monitoring mechanismme but the attacker executes another attack

e′ where e 6= e′ and e′ 6= no-act (see the transition for an example joint action from

s2 in Fig 4.10). Lastly, the transition from s3 shows a case relating to (3) mentioned

in the previous paragraph. The value of τ(s3,mon-FTP, exp-FTP, s1) = 0.9 because

monitoring access to files like /etc/passwd and /etc/shadow can only detect some

forms of privilege escalations (such as remote code execution that tries to eithers

creates a new user or tries to escalate the privilege of a non-root user), but may not

be able to monitor a case where an attacker simply obtains access to a root user

account.
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D (Defender)

no-mon mon-Web mon-FTP

no-act 0, 0 0,−2 0,−3

A (Attacker) exp-Web 7,−7 −8, 6 7,−10

exp-FTP 10,−10 10,−12 −8, 5

Table 4.5: Utilities (RA, RD) for the state s2.

no-mon mon-LDAP

no-act 0, 0 0,−2

exp-LDAP 5,−5 −5, 3

no-mon mon-FTP

no-act 0, 0 0,−2

exp-FTP 10,−10 −8, 6

Table 4.6: Utilities (RA, RD) for states s1 (left) and s3 (right).

Rewards The rewards that can be obtained by the players depending on their

strategy in a particular state (except the terminal state s0) of our cloud scenario is

shown in Table 4.6 and Table 4.5. Most prior works [13, 52, 34] have used (weak)

heuristics to come up with attacker utility and or defender’s resource costs. In our

case, the reward values are obtained using multiple metrics– (1) the impact score (IS)

of a particular attack, (2) the cost of performance degradation (provided by security

and engineering experts in the cloud domain; often obtained by running MiniNET

simulation) based on the placement of a particular IDS [35], and (3) the number of

hops taken by an attacker to reach a particular state, which is often used to measure

how advanced an Advanced Persistent Threat (APT) is. Note that the last factor

is the non-Markovian part of the overall reward function of our Markov Game; it

depends on the path taken by an attacker to reach a particular state. To bypass this

issue, we consider all possible paths an attacker can take to reach the particular state

and average the path value, which gives us an average of how advanced an APT is.
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Further, the actual path taken by a stealthy adversary who has been residing in the

network for a long time is difficult (if not impossible) to obtain. Thus, we believe an

average estimate provides a good heuristic for estimating the importance of an APT.

We now explain how the reward value for the action pair (mon-Web, exp-Web),

shown in Table 4.5, was obtained. First, The impact score for this vulnerability

CVE-2017-5059, shown in Table 4.4, is 7. Second, we monitored performance using

Nagios [113] to measure the end-to-end network bandwidth, the number of concurrent

requests to live web-services, and the delay in servicing network requests when mon-

Web was deployed. We observed that there was an increase in network delay, a

decrease in network bandwidth, and a decrease in the number of concurrent requests

serviced per second. Based on expert knowledge, we estimated the reward (or rather

impact on performance) of placing the IDS that monitors this vulnerability is −2.

Finally, given that this vulnerability can only be executed if the attacker has exploited

at least one vulnerability before coming to this state, the APT score was calculated

to be 1. Thus, the defender’s reward for placing the correct IDS that can detect the

corresponding attacker action is 7 minus 2 (cost incurred due to reduced performance)

plus 1 (for detecting an APT that had already penetrated 1-hop into the network),

totaling 6. On the other hand, the attacker’s reward for this action pair is−7 spending

effort is executing a vulnerability of impact 7 plus −1 for losing a vantage point in

the cloud network, totaling a reward of −8. The other reward values were defined

using a similar line of reasoning. Given that the defender’s cost of placing IDS is

not of any concern for the attacker 4 , when an attacker chooses no-act, A’s reward

is 0. On the contrary, the defender will still incur a negative reward if it deploys a

monitoring system because it impacts the performance of the sub-net.

4This is a strong reason to move away from the zero-sum reward modeling in [38].
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Algorithm 2 A Dynamic Programming Approach to find the Strong Stackelberg

Equilibrium in Markov Games

1: procedure Given (S,M,E, τ, RD, RA, γD = γA = γ),

2: Output(V i(s), πi(s) ∀ i ∈ {A,D})

3: V (s) = 0 ∀ s

4: while count < k do

5: // Update Q-values

6: Update QD(s,m, e) and QA(s,m, e) ∀ s ∈ S,m ∈M(s), e ∈ E(s)

7: using RD, RA and V (s).

8: // Do value and policy computation

9: Calculate V i(s) and πi(s) for i ∈ {A,D} using the values Qi(s,m, e) in

Equation 4.5

10: count← count+ 1

11: end while

12: end procedure

Optimal Placement Strategy

Finding the optimal solution to a two-player general-sum Markov Games is more

involved than finding the min-max strategy (in zero-sum settings). Moreover, in our

threat model, we assume that the attacker A, with reconnaissance efforts, will get to

know the strategy of the defender D, imparting it the flavor of leader-follower games.

We highlight a dynamic programming approach shown in Algorithm 2. Although

this algorithm looks similar to the one used for computing min-max equilibrium, it

has an important difference. In line 9, instead of using Equation 4.4 to calculate the

optimal value and player strategies, we compute the Strong Stackelberg Equilibrium

(SSE) in each state. For each iteration, we first consider the Q-values for that state
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and the joint actions represented as a normal-form game matrix. We then find the

optimal policy for both players in state s. Since our model, at present, does not

consider multiple adversary types, the equilibrium calculation for each state can be

done in polynomial time [102]. This type of a solution resembles the idea of finding

Stackelberg Equilibrium in discounted stochastic games, which has been discussed

earlier in [64]. As the authors compile the solution into an ILP approach over all the

states and time horizon of the Markov Game, it becomes computationally intensive

in our case given a large number of states in our formulation. Moreover, our dy-

namic programming approach acts as an anytime solution that can be stopped at a

premature stage (by setting lower values of k in Algorithm 2) to yield a strategy for

placement.

Given that the defender has a mixed strategy in every state, the notation x that

denoted their policy in the previous chapters is indexed with s and denoted as x(s).

Similarly, the attacker’s policy is denoted as q(s). We now highlight the MIQP used

in [61] that we use for the value function update in Algorithm 2.

max
x(s),q(s)

∑

m∈M

∑

e∈E

QD(s,m, e)x(s)mq(s)e (4.5)

s.t.
∑

m∈M

x(s)m = 1, ∀x(s)m, x(s)m ∈ [0, 1]
Defender’s selects a valid

mixed strategy.

∑

e∈E

q(s)e = 1, ∀q(s)e, q(s)e ∈ {0, 1} Attacker’s selects a valid

pure strategy.

0 ≤ v −
∑

m∈M

QA(s,m, e)x(s)m ≤ (1− q(s)e)L ∀q(s)e Attacker’s pure strategy maximizes their

reward given defender’s mixed strategy.

where L is a large positive number.

The assumption that an attacker, with the inherent advantage of reconnaissance,

is aware of the defender’s mixed policy in each state can be a strong one in the context
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of Markov games. Thus, one might question the optimality of the strategy that we

come up with using Algorithm 2. In [114], researchers have shown that SSEs are

a subset of Nash Equilibrium for a particular class of problems. Specifically, they

show that if the security resource allocation problem (which in our case, is allocating

IDS for covering a vulnerability) has a particular property, termed as SSAS, then the

defender’s SSE is also a NE for the game. Given this, we can state the following. 5

Lemma 4.2.1. If the Subset of Set Are Sets (SSAS) property holds in every state s

of a Markov Game, then the SSE is also a NE of the Markov Game.

Proof. We will prove the lemma by contradiction. Let us assume that SSAS property

holds in every state of a Markov Game (MG), but the SSE of the MG is not the NE.

First, consider γ = 0 for this MG. Thus, the SSE and NE strategy for each state can

be calculated only based on the utilities of only this state. Now, if SSE 6∈ NE for

this Markov Game, then there is some state in which the SSE strategy is not the NE

strategy. But if that is the case, then we would have violated the SSAS theorem in

[114] for the state, which cannot be true. For the case γ > 0, the proof still holds

because note that the SSAS property is not related to the Q-values using which the

strategy is computed in the Markov Game.

Note that this holds trivially for our small example because the defender’s pure

strategy for each state is to deploy a single IDS (and thus, all subset of schedules are

are a possible schedule).

5In the case of multiple attackers, SSE 6∈ NE. Although such scenarios exist in cybersecurity
settings, we consider a single attacker in this modeling and plan to consider the multiple attacker
setting in the future.
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Figure 4.11: Defender’s value for each of the four state–s1 (top-left), s2 (top-right),

s3 (bottom-left), and s0, which in the all absorbing terminal state (bottom-right).

4.2.3 Experimental Results

In this section, we first compare the effectiveness of the optimal strategies for

our general-sum leader-follower Markov-game against the Uniform Random Strategy,

which is a popular method and often used as a baseline for Moving Target Defense

strategies in cybersecurity. We then discuss the set-up of a real-world, small scale

cloud scenario and the gains we can obtain using our formulated Markov Game.

Evaluation of Strategies

We first discuss two baseline strategies and then briefly explain why we choose it for

comparison with the SSE strategy for our general-sum leader-follower Markov-game

formulated in the previous section.
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• Uniform Random Strategy (URS) In this, the defender samples an action by draw-

ing from a uniform random distribution over pure-strategies. For example, in the

state s1 shown in Table 4.5, the defender can choose to monitor the FTP or the Web

server or neither of them, all with an equal probability of 0.33.

Researchers have claimed that selecting between what to choose when shifting

between MTD configurations should be done using a uniform random strategy [1].

Although there have been other methods based on Stackelberg Security Games (SSGs)

which have shown that such a strategy may be sub-optimal [35], it provides a baseline

strategy that can be used in the context of our Markov Game. Adapting the latter

strategies proposed in previous work needs us to compile our multi-stage Markov into

a single step normal form game. First, there is no trivial way of doing this conversion

as the rewards in [35] consider the average impact on the network which is difficult

to encode meaningfully in our Markov Game. Furthermore, the pure strategy set in

[35] would have to incorporate full attack paths as opposed to single attack actions.

This would make the strategy computation time-consuming. Second, our work can

be seen as a generalization of applying the notion of Stackelberg Equilibria, similar

to [64], for Markov Games in the context of IDS placement and thus, a counterpart

solution to the normal form games case described in [35] to Markov Games. Hence,

we do not consider [35] as a baseline.

• Min-max Strategy Although our game is a general sum setting, one might ask how

sub-optimal the min-max strategies for a similar zero-sum Markov game is when we

ignore the impact on performance. In essence, the attacker still has the same utility

in the individual states shows in Tables 4.6 and 4.5, but the defender’s reward values

are just the opposite of the attacker’s reward, making it a zero-sum game. Here,
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we hope to see that the impact on performance would reduce the defender’s overall

utility.

Comparison of Strategies In Figure 4.11, we plot the values of the four states

(V (s)) of our game for the baselines (URS and Min-max), and the Strong Stackelberg

Eq. (SSE). We also, to provide empirical support for Lemma 1, plot the Nash Eq

(NE). On the x-axis, we vary the discount factor and on the y-axis plot the value

of the state with respect to the defender. In the terminal state s0, the defender

gains a high negative reward because the attacker was able to exploit all the possible

vulnerabilities successfully without getting detected. Thus, for all the states, since

there is a non-zero probability of reaching s0, the defender’s value function is negative.

Note that as one weighs the future rewards more, i.e. γ approaches 1, the value of

the states decreases in magnitude because the negative reward in s0 is given higher

weight.

As stated above, the SSE for our example game is the same as the NE for our

Markov Game, and the curves for both the strategies overlap. On the other hand,

URS is much worse off than our strategy for all the states with more than a single

action whereas, Min-max, although better than URS, is sub-optimal with respect to

SSE for all states except s3 and s0. s0, being a terminal state, has only one action

for the defender and thus, all the methods are trivially equivalent. Thus, all the

curves overlap (bottom-right in Figure 4.11). In state s3, which is just a single action

away from the terminal state with high negative reward, the defender always picks

the action to monitor for an attack regardless of the performance impact (whose

magnitude is less in comparison to the impact of the attack). Thus, even though the

Min-max strategy is ignorant of the latter costs, it picks the same strategy as SSE.

Hence, their plots overlap (bottom-left in Figure 4.11). Now, before discussing the
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differences between SSE and Min-max in the other two states (s1 and s2), we take a

look at the mixed strategy obtained by finding the SSE of our game. This will help

us in explaining the sub-optimality of the Min-max strategy. For a discount factor of

γ = 0.8:

1 πMG-SSE(s0) : {terminate: 1.0}

2 πMG-SSE(s1) : {no-mon: 0.097 , mon -LDAP: 0.903}

3 πMG-SSE(s2) : {no-mon: 0.0, mon -Web: 0.539 , mon -FTP: 0.461}

4 πMG-SSE(s3) : {pi_no -mon: 0.0, mon -FTP: 1.0}

Note that, in our example, barring the terminal state s0, other states have only

one or two proper detection actions because no-mon asks the defender to not monitor

for any attacks. Thus, we expected that these actions will have probabilities almost

equal to zero (unless it has a considerable impact on performance). In the case of state

s1, the 0.097 probability of picking that action shows that in states far away from

the terminal, the defender chooses to be a little more relaxed in terms of security

and pays more attention to performance. On the contrary, in state s3 an exploit

action will move the game to the terminal state that has a high-negative reward for

the defender, and thus, the defender is asked to place all attention to security. In

general, this implies that an Admin D should pay more attention to security against

APTs deep within the network in states closer to a critical resource and can choose to

reason about performance near the entry points of the cloud system. Thus, in these

states, the optimal mix-max strategy, oblivious to the performance costs, invests in

monitoring resources and thus, becomes sub-optimal with respect to the SSE.
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Figure 4.12: A small-scale cloud system that emulates the setup used in the Western

Region Cyber-security Defense Competition.

Case Study on the Cloud

In this section, we do a case study on a real-world sub-network in a cloud system,

highlighting briefly the system setup, the Markov Game formulation, the comparison

between URS and SSE for a (cherry-picked) state and how all these strategies can be

implemented with the help of Software Defined Networking.

Implementation details. We utilized the Virtual Machine (VM) images from the

Western Region Cybersecurity Defense Competition (WRCCDC) [115]. The com-

petition helps university students (the Blue Team) gain the first-hand experience in

dealing with real-world attacks. Students are asked to defend a corporate infrastruc-

ture against experienced white-hat hackers (the Red-Team). In the scenario shown

in Figure 4.12, a Red Team attacker mounts a multi-step attack by following a slow

and low approach, that tries to evade the IDS placed.
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Host High Medium Low

172.16.0.22 4 14 1

172.16.0.23 2 3 1

172.16.0.8 3 8 3

172.16.0.16 0 13 6

172.16.0.20 0 2 1

172.16.0.11 0 1 2

172.16.0.1 0 0 1

172.16.0.21 0 0 1

Total 9 41 16

Table 4.7: The number of vulnerabilities found in each machine of our cloud system

via persistent exploration with OpenVAS vulnerability scanner.

The goal of the attacker can be either to disrupt the network services or ex-filtrate

data out of the private networks. Both of these attacks, if successful, can lead to the

loss of mission-critical information (FTP server files are valuable to the company)

and business (service downtime). We model each of these goal states in the attack

graph as states that lead to an all-absorbing terminal state with unit probability, thus

ending the game.

The set of attacks were discovered using low-intensity network scanning tools like

OpenVAS that run over an extended period of time and generate a report of the

vulnerabilities present in the system. Due to space considerations, we summarize

the vulnerabilities present in our cloud network in Table 4.7. Corresponding to the

attacks, we considered the deployment of IDS mechanisms like Snort IDS, Web Proxy,

etc. situated at different levels of the protocol stack. We used WRCCDC’s VM
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Figure 4.13: Defender’s value in the states s0, s3 and s6 depending on the strategy

they follow as the discount factor γ increases from 0.5 to 1.

images to create a similar environment in our organization’s cloud service. To connect

these VMs, we created a flat structure network with Palo-Alto Network OS (Next-

Generation Firewall) hosted at the gateway of the network (172.16.0.0/24) and had

eight host machines in total [116].

The network was connected using SDN switch with OpenFlow v1.3 for (1) vulner-

ability scanning to gather knowledge about known attacks in the cloud, (2) computing

the Markov Game strategy and (3) enforcing a particular deployment strategy and

switching to a new one after a fixed time period T . For the first step, we used scanning

tools like OpenVAS, as described earlier. For the second step, we use our strategy

computation algorithm that also solves the optimization problem using Gurobi solver.

For the last step, we used to enable and disable (kill) scripts for the different IDS

mechanisms and perform them using SDN protocols.
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Results In the formulated Markov Game, we have eight states corresponding to

each VM in our cloud system. In figure 4.13, we highlight the defender’s value for

states s0, s3 and s6. In state s0, the attacker has root privilege on the Firewall VM

which is a lucrative vantage point in the network as it can help the adversary reach

all other states by choosing from an array of vulnerabilities. The defender’s pure

strategies in this state correspond to deploying a set of IDS mechanisms (as opposed

to a single IDS); certain sets are profitable in terms of resource usage and effort

needed for configuring them. For example, deployment of two Network-based IDS

using Snort is easier to configure for the Admin than the deployment of a host-based

and a network-based IDS at the same time. In the other states such as s3 and s6, the

attacker can only leverage exploits to gain privileges in the systems associated with

those stages. Thus, successful exploits lead to a terminal stage.

For this study, we did consider a zero negative utility in the terminal state. Thus,

the defender’s value in all the states is positive. Further, the rewards obtained in all

other states except s1 remain constant regardless of the value of γ. If Figure 4.13,

the values in s3 and s6, which are solely based on the impact of the exploit and

performance considerations, are always higher when using the inferred strategies at

Strong Stackelberg Equilibrium (SSE) when compared to Uniform Random Strategy.

Similarly, in s1, our proposed strategies outperform URS but owing to the various

states that can be reached from this vantage point, the values increase with an increase

in γ. URS neither discriminates between attacks that have higher impacts nor cares

about the asymmetric performance impacts; this becomes a major reason for its sub-

optimality.
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4.3 Related Work

Similar to our work in Chapter 3, Moving Target Defenses that shift the attack-

surface in the context of cloud networks has been extensively investigated [117, 34,

48, 109]. While these methods seek to take away the advantage of an attacker’s

reconnaissance, they can prove to be less effective against a stealthy adversary, i.e. one

who can reside deep within the network [99]. An overview of such works can be found

in [7]. While our methods in this chapter consider the movement of the detection

surface, the proposed game-theoretic modeling can be generalized for the movement

of the attack surface to address the challenges posed by a stealthy adversary.

In the context of designing meta-defenses for the detection surface, [94] has con-

sidered finding the optimal placement of detection systems in large networks. Un-

fortunately, they consider a static placement that becomes insecure as the adversary

gathers more knowledge about their static (or pure) placement strategy. On the other

hand, authors in [34] consider a dynamic (or mixed) placement strategy based on

graph-theoretic measures obtained by modeling the large network as a graph. As this

method incorporates neither the knowledge of known vulnerabilities nor models an

adversary, it solely optimizes for performance. In this regard, our work in this chapter

seeks to find movement strategies that strike a balance between the security and per-

formance metrics when considering the placement of detection systems in the cloud.

As shown in Chapter 3, designing a movement strategy M needs to incorporate

attacker modeling and consider game-theoretic reasoning for it to be effective. While

an array of work for physical security environments considers the concept of Stackel-

berg equilibrium, called Stackelberg Security Games [118, 119, 120, 121], researchers

have also looked into similar scenarios for placement of honey-nets in cloud-network

settings [14, 4]. Unfortunately, the latter works that also find the Stackelberg equilib-
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rium, do not scale when the number of defender strategies explodes combinatorially.

Fortunately, researchers have shown that decomposition of the reward structure makes

the problem of finding the Stackelberg Equilibrium computationally efficient [101]. In

our work in Section 4.1, we leverage this information to design the rewards for our

game and ensure that the Stackelberg equilibrium balances between two important

metrics [98]– (1) the costs of placing IDSs (on performance, cost of countermeasure

deployment, etc.) and (2) the impacts on the security of our system.

In the context of our work in Section 4.2, researchers have relied on the use of

attack graphs in trying to come up with a defender’s strategy of modifying the design

of the cloud environment [122, 123, 124]. While these make use of automated planning

and MTD formalism, they cannot be easily adapted for dynamic defenses like MTD.

In the context of large-scale cloud systems, the generation of attack graph suffers from

scalability issues [94]. To solve this problem in Section 4.2, we use a polynomial-time

distributed attack graph generation method developed in [24]. In comparison with

[64], who formulate problems in physical security settings as a Stochastic Game and

show that Markov strategies may be arbitrarily sub-optimal, our scenario can be

modeled as a Markovian setting. Further, our proposed approach based on dynamic

programming is more scalable and has flavors of an anytime search method.

4.4 Concluding Remarks

In Section 4.1, we addressed the problem of placing a fixed number of IDS systems

in a large cloud environment by proposing a Moving Target Defense (MTD) approach

for shifting the detection surface. While we also designed a similar approach for

moving the attack surface in web-applications in Chapter 3; this work was different in

two regards– (1) The main objective in this setting was to optimize performance while
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in the earlier work, the primary concern was security and (2) the computation of the

Stackelberg equilibrium, even without uncertainty w.r.t. attackers, became difficult

with a general reward structure because the size of MTD configurations in C exploded

combinatorially. Thus, we have to resort to a problem-specific reward description that

allowed us to effectively design movement strategies M in this context.

In Section 4.2, we considered a more pragmatic threat model in the cloud in which

attackers can plan multi-stage attacks. In this case, we leveraged the attack-graph

of a cloud network to design a Markov Game between the defender and the attacker.

The optimal defender policy provided a trade-off between system performance and

security of critical resources on the network. As an added advantage, the state space

of the Markov Game divided the network system into disjoint parts; this helped us

address the problem of asymmetric performance impact in the cloud network.
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Chapter 5

LEARNING MOVEMENT STRATEGIES FOR MOVING TARGET DEFENSE IN

WEB-APPLICATION AND CLOUD NETWORK SECURITY

Table of Contents � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

C (Any) Surface Shifting

t Constant Time Period

M Learns the Strong Stackelberg Strategy in Bayesian Stackelberg

Markov Games

In the previous chapters, we model the interaction between a defender and a

rational adversary in Moving Target Defenses for web-application and cloud-network

security as a game. This helps us leverage resources curated by system administrators

and cyber-security experts and define the various parameters of the game. We can

then design various optimization problems that can infer the movement strategies at

Strong Stackelberg Equilibrium in these games. Unfortunately, expecting experts to

provide detailed models about the system dynamics and the rewards may often be

difficult, if not unrealistic. At the same time, one may have access to a simulator

for the environment where they can execute defense and attack actions and infer its

effects. In such scenarios, we may be able to learn a movement policy from scratch

or adapt an inferred policy.
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In this chapter, we first propose a unifying game-theoretic framework termed

as the Bayesian Stackelberg Markov Games (BSMGs). BSMGs can model all the

nuances of the MTDs described in the previous chapters– it can (1) capture the un-

certainty over attacker types, (2) handle multi-step attacks, and (3) model switching

defenses. We then define the notion of optimal strategy as the Strong Stackelberg

Equilibrium of BSMGs and consider how they can be learned.

Researchers in security have considered techniques in reinforcement learning to

learn optimal movement policies over time [2, 54, 55, 56]. Unfortunately, these works

ignore (1) the strategic nature (and the rational behavior) inherent in an adversary

setting, and (2) the incomplete knowledge a defender may possess about their oppo-

nent. This, as we will show in our experiments, results in a new attack surface where

the defender’s movement policy can be exploited by an adversary. To mitigate this,

we bridge the knowledge gap between existing work, and techniques in multi-agent re-

inforcement learning by proposing a Bayesian Strong Stackelberg Q-learning (BSS-Q)

approach. First, we can show that BSS-Q converges to the Strong Stackelberg Equilib-

rium of BSMGs. Second, we design an Open-AI gym [125] style multi-agent environ-

ment for two Moving Target Defenses (one for web-application and the other for cloud-

network security) and compare the effectiveness of policies learned by BSS-Q against

existing state-of-the-art static policies and other reinforcement learning agents.

In the next section, we motivate the need for a unifying framework and formally

describe the proposed game-theoretic model of BSMGs. We briefly discuss how the

two Moving Target Defenses defined in Chapter 3 and Chapter 4 can be modeled as

BSGMs. We then introduce the Bayesian Strong Stackelberg Q-learning approach

and show that it converges to the SSE of BSMGs, followed by a section showcasing

experimental results. Finally, before concluding, we discuss related work.
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Figure 5.1: The defender starts with a uniform random strategy (x0) and then in-

teracts with the environment via a Bayesian Strong Stackelberg Q-learning (BSS-

Q) approach that modifies the defender’s movement strategy at every step based.

A simulated and rational adversary in this Stackelberg setting, is aware of the de-

fender’s commitment (i.e. the defender’s mixed strategy). After numerous episodes,

the learned movement policy converges to the Strong Stackelberg Eq. (SSE) of the

BSMG yielding x∗.

5.1 Bayesian Stackelberg Markov Games (BSMGs)

Markov Games (MGs) [110], defined in the previous chapter, are used to model

multi-agent interactions in sequential planning problems. Under this framework, a

player can reason about the behavior of other agents (co-operative or adversarial)

and come up with policies that adhere to some notion of equilibrium (where no

agent can gain by deviating away from the action or strategy profile). While MGs

have been widely used to model adversarial scenarios, they suffer from two major

shortcomings– (1) they do not consider incomplete information about the adversary

[126, 64, 42, 2] and/or (2) they consider weak threat models where the attacker has

no information about the defender’s policy [53, 54]. On the other hand, Bayesian
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Stackelberg Games [61, 20] is a single-stage game-theoretic formalism that addresses

both of these concerns but cannot be trivially generalized to sequential settings.

To overcome these challenges of expressiveness required for Moving Target De-

fenses (MTDs) while ensuring scalability, we introduce the formalism of Bayesian

Stackelberg Markov Games (BSMGs). BSMGs extends Bayesian Stackelberg Games

(BSGs) to multi-stage sequential games. While one can consider using existing for-

malism in Markov Games that capture incomplete information, they face severe scala-

bility issues and have thus been unpopular in cyber-security domains (we discuss how

BSMG is situated in this landscape of works in Section 5.4). In the context of Moving

Target Defense (MTD), BSMG acts as a unifying framework helping us characterize

optimal movement policies against strategic adversaries, capture transition dynam-

ics and costs of the underlying cyber-system, aid in reasoning about stronger threat

models, and consider incomplete information about strategic adversaries. Formally,

a BSMG can be represented by the tuple (P, S,Θ, A, τ, U, γD, γA) where,

• P = {D,A = {A1,A2, . . .At}} where D denotes the leader (defender) and A

denotes the follower (attacker). In our model, only the second player has t

types.

• S = {s1, s2, . . . , sk} are k (finite) states of the game,

• Θ = {θ1, θ2, . . . θk} denotes k probability distributions (for k states) over the t

attackers and θi(s) denotes the probability of i-th attacker type in state s

• A = {AD, AA1 , . . . AAt} denotes the action set of the player and Ai(s) represents

the set of actions/pure strategies available to player i in state s.

• τ i(s, aD, aAi , s′) represents the probability of reaching a state s′ ∈ S from the

state s ∈ S when the D chooses aD and attacker type i choose the action aAi ,
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• U = {UD, UA1 , . . . , UAt} where UD(s, aD, aAi) and U i(s, aD, aAi) represents the

reward/utility of D and an attacker type Ai respectively if, in state s, actions

aD and aAi are chosen by the players,

• γi 7→ [0, 1) is the discount factor for player i. We will assume that γD = γAi = γ.

In BSMGs the individual stage games constitute normal-form Bayesian games

with a distribution over attacker types; this is in contrast to the unit probability

over a single adversary type in MGs. Both in physical [61] and cyber-security [20],

defenders are known to have knowledge about follower types, a classic case of known-

unknowns. BSMGs provide the expressive power to represent this information; pre-

cisely θs represents the probability estimate with which a defender believes a certain

kind of adversary is encountered in a particular state s of the game.

Note that a defender D is expected to deploy a system first. Thus, a strong threat

model assumes that all the attacker types Ai know the defender’s policy, making the

Bayesian notion of Stackelberg Equilibrium an appropriate solution concept for such

games. For a normal-form game, let a defender’s mixed policy be denoted as x and

let us denote an attacker type Ai’s response set (i.e. a set of best responses to x) as

Ri(x). If the response set for all adversary types is singleton, then the action profile

(x,R1(x), . . . Rt(x)) constitutes a Stackelberg Equilibrium of the normal-form game

[60]. When the response set contains more than one action, the final response chosen

can yield different rewards forD. In such cases, a popular assumption made in general-

sum games is to consider the response that results in the optimal rewards for D; this

is termed as the Strong Stackelberg Equilibrium (SSE) [75, 61, 118, 20]. In contrast to

the notion of Weak Stackelberg Equilibrium, which considers the pessimistic case, an

SSE is guaranteed to exist and yields a unique game value to the defender regardless
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of the particular SSE chosen [57, 59]. Thus, we consider SSEs as the solution concept

in BSMGs and highlight a few properties about player strategies at equilibrium.

Lemma 5.1.1. For a given policy of the leader/defender in BSMG, every follow-

er/attacker type will have a deterministic policy ∀s ∈ S.

We note that BSMGs adhere to the Markovian nature and thus, a leader’s policy

is a Markov stationary policy [64]. For each follower type, a modified state transition

function τ ′ that accounts for (1) the original transition τ and (2) the leader policy x

constitutes a Markov Decision Process (MDP) (i.e. τ ′ = τ · x). This guarantees that

each follower type has a deterministic best-response policy given a leader’s policy.

Corollary 5.1.1.1. For an SSE policy of the defender, denoted as x, each attacker

type Ai has a deterministic policy qi. The action (x, q1, . . . qt) denotes the SSE of the

BSMG.

We can now extend results known for Markov Games with a single follower type

with a singleton response set where the distinction between Strong and Weak SE does

not arise [127].

Lemma 5.1.2. An action profile (x, q1, . . . , qt) that yields the equilibrium values V Dx,q

and V Aix,q to the players is at SSE of BSMG, iff ∀s ∈ S (x(s), q1(s), . . . , qt(s)) is an

SSE of the bi-matrix Bayesian game represented by the Q-values QDx,qi(s), Q
Ai
x,qi

(s).

First, note that a follower type can have a pure strategy response that corresponds

to a Strong Stackelberg Equilibrium for single-stage normal-form games. Given a

defender’s policy, the attacker solves a linear (reward) maximization that always has

a pure strategy in support of an optimal mixed strategy [61]. Hence, qi(s) is a pure-

strategy of the bi-matrix game represented by the Q-values if state s. This ensures
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that the SSE of the BSMG (Corollary 1) and the SSE of the bi-matrix games in each

state admit pure-strategy for the individual follower types.

We will now prove the lemma in the forward direction by considering a proof by

contradiction. Let us assume that (1) (x, q1, . . . , qt) is an SSE action profile of BSMG

with equilibrium values V p
x,qi
∀p ∈ P but, (2) ∃s ∈ S for which (x(s), q1(s), . . . , qt(s))

is not the SSE of the bi-matrix Bayesian game defined by the Q-values of s . If it

were so, given that an SSE is bound to exist for the bi-matrix Bayesian game and

it yields the highest unique pay-off to the players in a bi-matrix Bayesian game, a

player p (D or Ai) should switch from their current strategy to an SSE in state s.

This would clearly yield values higher than V p
x,qi

(s) for that state. This violates (1)

because V p
x,qi

(s) was the equilibrium values of the BSMG corresponding to an SSE

policy that has a unique optimal value. Thus, (1) implies (2).

A similar proof by contradiction can be constructed for the backward direction.

Briefly, if the strategy in the states constitute SSE of the stage game but are not an

SSE of the BSMG, it must be possible to switch the strategy in at least one state to

yield the higher value guaranteed by the SSE of the BSMG. But if that is the case, the

original assumption that the initial strategy in that state is an SSE is contradicted. �

When the parameters of a game are provided up-front, an approach similar to cal-

culating Strong Stackelberg Equilibrium in Bayesian Games discussed in Chapter 3

alongside Mixed-Integer Non-Linear Programming approaches [64] or Bellman-style

approaches for Markov Games discussed in Chapter 4 can be leveraged to find the

defender’s policy. In contrast, when game-parameters are difficult to provide upfront

but interaction with an environment is considered possible, we can resort to reinforce-

ment learning techniques. Before proposing our model-free multi-agent reinforcement
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learning method in the next section, we briefly discuss how the various MTDs, used

later in the experiments, are modeled as BSMGs.

5.1.1 Modeling Moving Target Defense Scenarios as BSMGs

In this section, we briefly highlight how the MTDs presented in the previous chap-

ter can be modeled as a BSMG. As a quick recap, a Moving Target Defense (MTD) is

defined by the tuple 〈C, t,M〉 where C represents the set of configurations a system

can choose to be in, t represents a timing function that determines when a system

switches and M represents a movement function that determines the movement pol-

icy. We will assume a constant function t for switching (the game clock) and discuss

how we can leverage C to model the states and the actions of our BSMG. Finally,

we leverage existing knowledge to model the follower types for the particular MTD

scenario.

MTD for web-application security

In Chapter 3, we model an MTD for web-applications as a Bayesian Stackelberg

Game (BSG). In addition, we consider the performance impact of movement between

configurations (downtime, service latency, etc.) when coming up with a movement

policy. Note that while the switching cost can’t be modeled as the reward of the

single-stage BSG, it can be modeled as a Markovian reward of a multi-stage game.

By definition, this implies the formulation in Chapter 3 results in a state-agnostic

sub-optimal policy. On the other hand, BSMGs can, given its sequential nature,

express (and as we will later show, learn) this information.

The BSMG has |C| states, each representing a configuration of the MTD system.

Each configuration has an equal probability of being the start state in an episode and
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there exists no terminal state. In each state, s ∈ S,AD(s) = C, i.e. the defender can

choose to move to any configuration (this includes remaining in the same state). The

three attacker types are denoted asA = {A1,A2,A3} and the probability distribution,

provided in [20], over these types in-state s represented is θs. The adversary’s action

sets, denoted by (AA1 , AA2 , AA3), as presented in Chapter 3, represent mined CVEs

from the National Vulnerability Database [128] and the distribution over attacker

types remain the same in all states of the BSMG.

MTD against multi-stage attacks

While BSMGs allow us to represent uncertainty over attacker types, game-theoretic

formulations of MTD in cloud networks discussed in Chapter 4 consider single follower

types. Thus, they can be simply boiled down to a Markov Game formulated in

Section 4.2. We note that MGs are a special case of our proposed BSMGs (see

Figure 5.5) and can incorporating ongoing research on the characterizing attacker

types in the context of such scenarios [111].

5.2 Strong Stackelberg Q-learning in BSMGs

While game-theoretic formalism has been used to model various cyber-security

scenarios [22, 13, 20], it is impractical to expect security experts to provide the pa-

rameters of the game upfront [2, 55, 56]. In the context of Moving Target Defense

(MTD) in particular, determining the impact of various attacks, the asymmetric im-

pacts of a particular defense on performance, and the switching cost of a system are

better obtained via interaction with an environment. Further, there exists uncertainty

regarding the success of an attack (eg. a buffer overflow attack may need significant

tinkering for it to be successful) and also the success of defense mechanisms (eg. In-
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Algorithm 3 Bayesian Strong Stackelberg Q-learning (BSS-Q) for BSMGs.

1: In: (P, S,A,Θ, γ), mtd sim, α, num episodes

2: Out: Policies of the players x for D, qi ∀i ∈ A

3: while num episodes > 0 do

4: s← sample start state from S

5: while s 6= terminal state OR !max eps len do

6: i← sample attacker type using θs from A

7: aD, aAi ← ε-greedy sampling form x(s), qi(s)

8: rD, rAi , s′ ← mtd sim.act(s, aD, aA)

9: QD,i ← (1− α)QD,i(s, aD, aAi) + α[rD + γDV D(s′)]

10: QAi ← (1− α)QAi(s, aD, aAi) + α[rAi + γDV Ai(s′)]

11: (x, qj), (V
D, V Aj)← solve Bayesian Stackelberg Game(QD,i, QAj) ∀j

12: end while

13: end while

trusion Detection Systems based on machine learning can be inaccurate) which can

be better inferred via repeated interactions.

In existing works on MTD, the goal, in the presence of (1) game parameters

and (2) incomplete information about an adversary, the goal is to learn a robust

policy that works best, in expectation, against all adversaries. When modeled as

a multi-agent reinforcement learning problem, an interesting distinction ensues. If

the defender gets to interact with the environment and an actual adversary, they

can update their incomplete information about the adversary, leading to a Bayesian

style update regarding the attacker types after every interaction [54]. Unfortunately,

reinforcement learning methods are often sample-inefficient and require abundant

interaction with a real-world adversary. In cyber-security scenarios, this is nearly
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impossible. Thus, the best the defender can do is to simulate an adversary in their

head and learn a robust policy via interaction with the environment.

To learn a robust policy, we consider the use of a Multi-agent Reinforcement Learn-

ing approach for BSMG. Specifically, given the inherent leader-follower paradigm

present in our setting, we propose the use of a Bayesian Strong Stackelberg Q-learning

(BSS-Q) approach for BSMGs discussed in Algorithm 3. The approach is similar to

existing work in multi-agent reinforcement learning (MARL) and considers a Bellman-

style Q-learning approach for calculating the agent policies over time. In lines 9 and

10, we update the Q-values for the players D and adversary type Ai in the state

s using the rewards obtained by acting in the environment. Since we simulate the

adversary, we can select an action on its behalf and send it across to the simulator

mtd sim. Given mtd sim which has an idea whether the attack succeeded or failed,

it can send us back the attacker’s reward. 1 In existing works on MARL, they

make a default assumption that the defender gets the attacker’s reward even when

the adversary is not simulated [127]. While this assumption is somewhat justified in

the context of constant-sum or common-payoff games, it becomes unrealistic in the

context of general-sum games.

In line 11, we use a Bayesian Stackelberg Game solver to calculate the BSS of

the normal form Bayesian bi-matrix game defined by the Q-values in state s. It is

known that finding an SSE of a Bayesian Stackelberg Game is NP-hard and thus, the

computation in line 10 might seem prohibitive. In practice, as shown in our experi-

ments, compact representation of the scenario as a MILP [61] can help in computing

the value and the policy within a second even for web-application domains with more

than 300 executable attack actions [20]. Note that even though only one follower

1If interaction with an adversary is possible, the defender should consider a Bayesian style update
of the parameters θs depending on the observed action and the observed reward after line 10.
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type acts in the environment, the change in the defender’s policy because of this can

lead to the other follower types switching their actions. Hence, solving the Bayesian

stage game (in its full glory) becomes essential to converge to an SSE policy of the

BSMG (and batch update methods, which can speed-up computation, become less

reliable). Methods that scale-up equilibrium computation in security games [118] rely

on a known reward structure. Unfortunately, this makes it difficult to justify their

use in our setting, where the rewards are unknown and thus, may have an arbitrary

reward structure.

Proposition 1. (Convergence Result) The Bayesian Strong Stackelberg Q-

learning approach converges to the BSS of a BSMG.

Our proof of convergence is inspired from the initial work by [129]. Let us call

the Q-value update step as a process Ω : Q → Q where Q represents the space of

Q-values. Formally we can express the update equation for the leader D as,

Ω(QD,i(s, aD, aAi)) = UD,i(s, aD, aAi) + γV D(sT+1)

Where V D represents the leader’s game value in the Bayesian Stackelberg Game

(BSG) defined by Q-values and the distribution over follower types in state sT+1.

With some abuse of notation, we can drop the arguments (s, aD, aAi) for both the

functions QD and UD and rewrite the above equation by expanding the value function

as follows.

Ω(QD,i) = UD,i + γV D(sT+1)

To prove convergence of the function/operator/process Ω, we need to show the fol-

lowing two conditions hold (as described in [129]; the other two conditions mentioned

hold trivially in our setting, as it holds in the case of other Q-learning approaches).

119



(1) The following processes converge to a fixed point.

QD,iT+1 = (1− αT )QD,iT + αTΩ(QD,isse) ∀ i

QAiT+1 = (1− αT )QAiT + αTΩ(QAisse) ∀ i

where Qsse represents the Q-values at SSE of the BSMG.

(2) The process Ω is a real contraction operator.

||Ω(Q)− Ω(Q̄)|| ≤ a||Q− Q̄|| ∀Q, Q̄ ∈ Q

where 0 < a < 1 and || · || denotes the supremum operator over the vector space

Q.

To prove the conditions in (1), we leverage the Condition Averaging Lemma stated

in [129] and thus, have to show that,

QD,isse = E[Ω(QD,isse)] , QAisse = E[Ω(QAisse)] ∀ i

where the expectation is over the states reached. To show this, we first expand the

right hand side of the equation and showing that this expansion is equal to the left

hand side.

E[Ω(QD,isse)] = UD + γ E[V D(s′)]

= UD + γ E[V Dsse(s
′)]

= UD + γ
∑

s′

τ(s′|s, σ) ∗ V Dsse(s′)

= QD,isse

where V Dsse indicates the game value of the defender at SSE. V D = V Dsse because the

Q-matrices in all state represent the value at SSE. The final equality is a result of
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the Bellman equation for multi-agent settings. It is easy to see that the same line of

reasoning holds for all all follower types.

To prove the condition in (2), we will first expand the Left Hand Side (LHS)

followed by the expansion of the Right Hand Side (RHS). Then we will show that a

stricter case of the inequality is satisfied. We first show this for the follower and then,

for the leader.

||Ω(QAi)− Ω(Q̄Ai)||

= max
s

(
Ω(QAi(s, x,R(x)))− Ω(Q̄Aii(s, x,R(x)))

)

= γmax
s

(
V Ai(s′)− V̄ Ai(s′)

)

= γmax
s

(
max
x

QAi(s′, x, RAi(x))−max
x

Q̄Ai(s′, x, RAi(x))
)

= γ
(

max
x

QAi(s′, x, RAi(x))−max
x

Q̄Ai(s′, x, RAi(x))
)

(5.1)

The first equality is based on the use of the supremum operator. Given that the max

occurs for some s, without loss of generality, we can assume this state is s going to

state s′. In a similar way, we can expand the RHS for the follower.

a||QAi − Q̄Ai ||

= amax
s

max
x

max
q

(
QAi(s, x, q)− Q̄Ai(s, x, q)

)

≥ amax
x

max
q

(
QAi(s′, x, q)− Q̄Ai(s′, x, q)

)

≥ amax
x

(
QAi(s′, x, RAi(x))− Q̄Ai(s′, x, RAi(x))

)
(5.2)

Note the we now have a stricter version of the RHS. If we can now show that Equa-

tion 5.1 ≤ Equation 5.2, then we can prove condition (2) holds for the Q-values of all

follower types. Given 0 ≥ γ < 1, we can consider a = γ. Now we have,

γ
(

max
x

QAi(s′, x, RAi(x))−max
x

Q̄Ai(s′, x, RAi(x))
)

= a
(

max
x

QAi(s′, x, RAi(x))−max
x

Q̄Ai(s′, x, RAi(x))
)
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≤ amax
x

(
QAi(s′, x, RAi(x))− Q̄Ai(s′, x, RAi(x))

)

≤ a||QAi − Q̄Ai ||

The first inequality holds because in the second step, one can select two different x-s

to minimize the difference while in the third step, one is constrained to select the

same x for both the Q-values.

Now, we show that Ω is also a contraction operator for the Q-values of the defender.

Showing the property holds is difficult to show for individual follower types because of

the Bayesian nature of the game. It is possible to show this for a transformed attacker

conjured using the Harsanyi transformation [130]. In this setting, the single attacker

type has actions that are the cross product of the action of all other players and

the utilities of the Q-value matrix represent the expected Q-value over the original

attacker types. Given this single attacker type, we use QD to denote the Q-values

against this newly transformed attacker. Given the solver we are using in our BSS

Q-learning approach in calculating SSE of the BSG stage games is equivalent to the

SSE of this transformed game [61], showing Ω is a contraction operator for QD is

sufficient to show convergence. We use A in the superscripts to denote value for this

transformed attacker type.

||Ω(QD)− Ω(Q̄D)||

= max
s

(
Ω(QD(s, x,RA(x)))− Ω(Q̄D(s, x,RA(x)))

)

= γmax
s

(
V D(s′)− V̄ D(s′)

)

= γmax
s

(
max
x

∑

i

θi(s′)QD,i(s′, x, RD,i(x))−max
x

∑

i

θi(s′)Q̄D,i(s′, x, RD,i(x))
)

= γ
(

max
x

∑

i

θi(s′)QD,i(s′, x, RD,i(x))−max
x

∑

i

θi(s′)Q̄D,i(s′, x, RD,i(x))
)
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= a
(

max
x

∑

i

θi(s′)QD,i(s′, x, RD,i(x))−max
x

∑

i

θi(s′)Q̄D,i(s′, x, RD,i(x))
)

≤ amax
x

(∑

i

θi(s′)QD,i(s′, x, RD,i(x))−
∑

i

θi(s′)Q̄D,i(s′, x, RD,i(x))
)

≤ amax
s

max
x

(∑

i

θi(s)QD,i(s, x,RD,i(x))−
∑

i

θi(s)Q̄D,i(s, x,RD,i(x))
)

≤ amax
s

max
x

Π max
qAi

(∑

i

θi(s)QD,i(s, x, qAi)−
∑

i

θi(s)Q̄D,i(s, x, qAi)
)

≤ amax
s

max
x

max
qA

(
QD(s, x, qA)− Q̄D(s, x, qA)

)

= a||QD − Q̄D||

If we were now to consider Q̄ = Qsse for all the player and player types, then

the Q-values learned by our method will approach Qsse. While this completes our

convergence proof, we note that the convergence rate depends on two factors. First,

Selecting randomly among best-responses, even if multiple exist, for the follower re-

sults in slower convergence. Selecting consistently in some order (eg. first after sorting

the response set) results in faster convergence. Note that random selection does not

cause issues beyond slowing down convergence because for each follower type, given a

leader’s strategy, regardless of the best response strategy selected, the game value for

both players remains the same due to the nature of SSE [57, 59]. Second, a similar

line of reasoning for the defender concludes that a pre-defined selection mechanism

can result in faster convergence.

5.3 Experiments

We conduct experiments to understand the effectiveness of the learned movement

policies for the two MTD scenarios described above. As many existing baselines can’t

handle unknown utilities and transition dynamics, we develop an OpenAI style [125]
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Agents Time (sec)

Static 84.097± 0.157

B-EXP-Q 224.827± 1.449

BSS-Q 151.127± 13.403

B-Nash-Q > 3600

Table 5.1: Time taken by the different agents.

game simulator, similar to other works in reinforcement learning for cyber-security

[55, 56], that are aware of the underlying game parameters but interacts with the

learning agents only via selected public-facing APIs. This helps us to compare against

baselines that assume game parameters are available. While the impacts of attack

actions are obtained in the simulator using the Common Vulnerability Scoring Ser-

vice (CVSS), we can consider real system interaction, pending investigation, to obtain

less-informative and sparse rewards. More details about the game simulator and addi-

tional experiments can be found in Appendix B. For both experiments, the defender

(who samples a follower type in each interaction) is a single-thread process and re-

gardless of their policy, are pitted against a strategic and ration adversary. The code

used Gurobi for solving the Bayesian Stackelberg Game (BSG) game in line 11 of Al-

gorithm 3 and ran on an Intel Xeon(R) CPU E5-2643 v3 @ 3.40GHz with 64GB RAM.

5.3.1 MTD for Web-applications

We use the game parameters obtained in Chapter 3 to design our game simulator.

The simulator, given the current state and the defender’s action, lets us return the

switching costs as a part of the reward obtained via interaction with the environment.

The game has four states, each representing a full-stack configuration of the system–
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Figure 5.2: The defender’s value in the four states of the BSMG modeling for the

web-applications MTD when using BSS Q-learning (blue) compared to Uniform Ran-

dom Strategy (orange) [1], a Bayesian version of EXP-Q learning (green) [2] and the

optimal stage-agnostic strategy (red) inferred in Chapter 3.

{(py, MySQL),(py, PostgreSQL),(Php, MySQL),(Php, PostgreSQL))}. We consider

three attacker types– A1 (database hacker) with 269 actions, A2 (script kiddie) with

34 actions, and A3 (mainstream hacker) with 48 actions.

The defender’s policy in each state is a mixed strategy that directs how to switch

to a different configuration, while an attacker type’s policy prioritizes attacks that

cause maximum damage. In Figure 5.2, we plot the defender’s reward (over 6 trials)

in this BSMG for our BSS-Q learning agent and other baselines. In each setting, we

use a discount factor of γ = 0.8, an exploration rate of ε = 0.1 (that gradually decays

to 0.05) and initiate the agents with a uniform random strategy (except in the case

of S-OPT explained as follow). The average time used by the methods for one trial

is shown in Table 5.1. We will now explain all the baselines considered.

Inferred Movement Policies These defense policies, evident from its name, are

determined up-front (using game parameters provided initially) and do not change.

The placebo baseline, used as a sanity check in the context of MTDs, is the Uniform

Random Strategy (URS); it selects each action in a state with equal probability
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Figure 5.3: Comparing BSS-Q learning agents with URS (orange) and the EXP-Q

learning (green) on MTD for web-applications when switching costs are represented

in the transition function of BSMGs.

[1]. Then, we consider the state-agnostic optimal policy (S-OPT) determined in

Chapter 3.

Learning Agents In [2], the authors leverage adversarial multi-arm bandits in

learning policies for an agent in Markov Security Games. While the paper draws

inspiration from works in Stackelberg Security Games [118], the EXP Q-learning

approach does not consider (1) a strategic adversary that can adapt or (2) uncertainty

over attacker types. We adapt their algorithm for BSMGs by ensuring that the update

to the sum of rewards is weighed by the attacker type’s probability. We call this the

Bayesian EXP Q-learning agent (B-EXP-Q). The Bayesian Nash Q-learning (B-Nash-

Q) [54], even after we remove the Bayesian update of θs, does not scale for this domain

and thus, can only be compared against in simple toy domains (a non-Bayesian version

is discussed for the other MTD).

In Figure 5.2, we see that the BSS Q-learning agent outperforms URS in all the

states of the BSMG and better than B-EXP-Q and S-OPT in s2 and s3, attaining

a reward close to 0, which is the maximum reward possible in this game. In s0

and s1, the B-EXP-Q agent, similar to the BSS-Q agent, converges to an optimal
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movement strategy. Meanwhile, in s3, the best response of the attacker results in lower

rewards for a particular defense action, in turn making this action less probable. As

soon as the defender switches to a more promising action, the attacker changes their

response to yield a low value for that action. It should be no surprise that defense

strategies learned via single-agent RL methods (eg. [2, 55, 56]) are prone to be

exploitable against strategic opponents in cyber-security scenarios. The existence of

such a cycle makes the learned policy exploitable, resulting in low rewards consistently.

In such cases, even the URS yields better rewards because its lack of bias makes it less

exploitable. The S-OPT, as described in [20], yields a strategy that moves between

two MTD configurations represented by s2 and s3. As such a strategy can never find

itself in any other state of the game, to be fair, we ensure that the start state in each

episode is uniformly sampled from s2, s3. Thus S-OPT has no footprint in the states

s0 and s1. As stated before, the S-OPT strategy, a resultant of the state-agnostic

game-theoretic formulation, is doomed to be sub-optimal. Unsurprisingly, the policy

learned by BSS-Q is shown to be better in s2 and s3. A drop in rewards near episode

70 in s1 for BSS-Q can be attributed to the discovery of powerful attacks by two

follower types in one trail.

Switching Cost as Transition Dynamics We consider a different perspective on

switching costs that is possible to represent using BSMG but cannot be captured by

our model presented in Chapter 3. In this setting, we do not capture the switching

cost as part of the reward metric, but use it to guide the transition dynamics of the

underlying environment. Precisely, when an act API is called, we use the defender’s

action aD to perform the switch. While performing the switch action, if we observe

a drop in the successful processing of packets or an increase in the response latency,

calibrated by a threshold, we abort the move action and stay in the same state. This
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Figure 5.4: Values in the BSMG-based MTD for IDS placement when using BSS Q-

learning (blue) compared to Uniform Random Strategy (orange), the EXP-Q learning

(green) and the Nash Q-learning (red).

makes the underlying environment stochastic, which as per the model in Chapter 3,

was deterministic. We use the existing switching cost to guide the transition dynam-

ics, i.e. expensive switches have a higher probability of failing to execute the switch

and thus, remain in the same state.

In Figure 5.3, we plot the rewards obtained by the proposed BSS Q-learning agent

in comparison to the baselines described in the paper– namely the Uniform Random

Strategy (URS) and the adversarial multi-arm bandit based EXP-Q learning agent.

The state-agnostic optimal policy is ill-defined in this scenario as it only expects to

find itself in two configurations of the system and such assurances are impossible

given the stochastic nature of the environment. We use a discount factor of 0.8, an

exploration rate of 0.15 (that decays gradually to 0.05, and a learning rate of 0.06.

As before, BSS-Q gathers higher reward, over six trails, than URS. In this set-

ting, it performs better than EXP-Q in three states s0, s2 and s3 (the margin of

improvement being significantly better in s0 and s2).
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5.3.2 MTD for IDS Placement

We consider the General-Sum Markov Game formulated in Chapter 4. As de-

scribed earlier, this domain has four states, of which, one is a terminal state. As the

set of follower types in this game in singleton, the BSMG model boils down to Markov

Game. Hence, the vanilla EXP-Q agent can be used (albeit against a rational fol-

lower). The URS baseline remains unchanged, S-OPT deems to exist and instead of

Bayesian Nash, we can consider the relatively more scalable Nash Q-learning (Nash-

Q) agent [131]. The rewards obtained by the various agents in the three non-terminal

states of the game are plotted in Figure 5.4. Given the domain has relatively fewer

actions, we average the reward over 10 trials; each trial had 100 episodes and with an

exploration rate of 0.1 and a discount factor of 0.8.

The BSS Q-learning agent outperforms the two previous baselines– URS and EXP-

Q– in at least one of the three states. In this setting, the Stackelberg threat model

adversely affects the policy learned by EXP-Q resulting in consistent low rewards for

states s1 and s2. While we showed in Section 4.2 that the SSE ⊆ NE for the MG

devised in this setting, owing to the structure of the defender’s strategy sets, we see

that Nash-Q performs slightly worse the BSS-Q in state s1. This happens because

of the existence of multiple Nash Equilibria (see Section 2.2); the strategy found by

Nash-Q Learning does not guarantee the optimal reward [132].

5.4 Related Work

Multi-agent Reinforcement Learning in Markov Games A standard solution

strategy in MGs, when τ and U are unknown but a simulator is available, is to adapt

the Bellman’s update used in the single-agent Markov Decision Processes (MDPs) for
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Figure 5.5: Situating Bayesian Stackelberg Markov Games (BSMGs) in the context of

other game-theoretic models that try to capture incomplete information in Stochastic

Games.

multi-agent reinforcement learning to learn equilibrium policies [132]. In the context

of MARL, researchers have investigated different notions of equilibrium. The min-

max Q-learning is meaningful when the game has a zero-sum reward structure [107].

On the other hand, Nash Q-learning, introduced in [131], has been categorized into

two types by [133]– Friend, where the game defined by the Q-values always allows for

an optimal joint action profile, and Foe, where the game admits a saddle point solu-

tion. The convergence of these algorithms is mostly shown by the fact that Q-values

of the states in self-play, given infinite exploration, approach the correct Q-values

(i.e. calculated Q-values if all the parameters of the game were provided upfront).

The convergence of Nash Q-learning in the context of general-sum games becomes
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difficult because of the existence of multiple equilibria and the lack of a common

incentive or co-ordination amidst agents [132]. In correlated equilibrium (CE) Q-

learning [134], authors assume the existence of a correlation device accessible to both

players. However, the authors show that the learned strategies of the players converge

to an uncorrelated equilibrium. On the other hand, in Stackelberg Q-learning [127],

there exists a leader-follower paradigm among the players, i.e .the leader’s strategy

can be observed by a follower before the latter commits to an action. Convergence

guarantees in self-play, although popular, become less meaningful when action sets of

the players are different (defense configuration vs. exploits) and game utilities have

a general-sum reward structure.

The Landscape of Existing Games We seek to answer two questions– where

does our BSMG fit in and why it is useful. In Figure 5.5, we graphically situate

BSMG in the landscape of existing work. BSMG, as seen in the experiments, can

generalize Markov Games [110] (and therefore, MDP). Instead of assuming infinite

reasoning capabilities required for Bayesian Nash equilibrium [135], Bayesian Markov

Game considers scenarios where players have finite levels of belief about other play-

ers(s) [136]. On the other hand, Markov Games with Imperfect Information (MGIIs)

assumes a Markovian property over the state, the observations, and the joint set of

actions; this results in reasoning over opponent types and allows them to decompose

Partially Observable Stochastic Games (POSGs) [137] into a set of Bayesian stage-

games [138]. In BSMGs, the assumption of a pre-specified distribution over attacker

types helps us (1) avoid reasoning over the nested belief space, and (2) can be inter-

preted as the private information of the opponent in MGIIs (and POSGs) as being

provided upfront. Thus, BSMG becomes a special case of MGII and BMG with the

added semantics of leader-follower interaction. Our assumptions (about modeling im-
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perfect information) helps our game be scalable while providing adequate expressive

power in the context of MTDs.

Leader-follower scenarios Researchers have investigated solution concepts in the

context of Stochastic games with multiple-followers, but did not model the aspect

of incomplete information in them. 2 The interaction is generally modeled as a

Semi-Markov Decision Process [139] and the improvements consider (1) multiple fol-

lowers [140], (2) factored state spaces [141], (3) methods based on deep reinforcement

learning [142, 143] etc.

Reinforcement Learning in MTDs Works that are precursors to our BSS-Q

learning approach are the min-max Q-learning [53] in the context of complete infor-

mation MGs and the Bayesian Nash Q-learning [54] for dynamic placement of sensors.

Recent works that model the multi-agent cyber-scenarios as an MDPs (RL in Flip-it

games [55]) or POMDPs (RL for MTDs [56]), as shown above, can generate policies

that can be exploited by a strategic adversary.

5.5 Concluding Remarks

This chapter took a critical view of the different game-theoretic models developed

for MTDs in web-application and cloud network security in the previous chapters.

We proposed a novel game– the Bayesian Stackelberg Markov Game (BSMG)– that

considers the leader-follower scenario and uncertainty over adversary types in Markov

Games. We showed that BSMG is a unified framework to characterize optimal move-

ment policies in Moving Target Defenses (MTDs).

2Extending the uncertainty over follower-types in BSMGs to multiple followers (with their types)
can result in further challenges for scalability.
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We then highlighted the challenge of being provided the game parameters up-

front. This makes the inference mechanisms devised in Chapter 3 and 4 ineffective.

To address this, we consider that a simulation environment, a stand-in for the real

cybersecurity environment is available and proposed a Bayesian Strong Stackelberg Q-

learning (BSS-Q) approach to learning robust policies. We showed that BSS-Q learn-

ing converges to the SSE of the BSMG. Experiments conducted in the cyber-security

scenarios presented earlier– MTD for web-application and MTD for cloud-networks–

showed that policies learned using BSS-Q outperform existing baselines.
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Part II

Moving Target Defense for all

(MTD for all)
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Chapter 6

MOVING TARGET DEFENSE FOR CYBER-DECEPTION

Table of Contents � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

C Deception Surface Shifting using Conflict-free Honey-patches

t Constant/Fixed Time Period

M Stackelberg Strategy of a Bayesian Normal-form Game

The second part of this thesis considers the novel use of Moving Target Defense

in existing application domains. Before we move away from cyber-systems and delve

into MTDs for machine learning systems and cyber-physical systems in the next chap-

ters, we unite the two most promising proactive defenses in cyber-security– (1) cyber

deception [4] and (2) moving target defense [5] in this chapter.

To anticipate and thwart directed cyberattacks, deceptive honey-patching [144] has

been proposed as a language-based methodology to patch software security vulnera-

bilities in a way that future attempted exploits of the patched vulnerability appear

successful to attackers even when they are not. Such techniques can mask patching

lapses, impeding attackers from discerning which systems are genuinely vulnerable,

and confuse attackers about which patched systems masquerade as unpatched sys-

tems. Detected attacks are surreptitiously redirected to isolated, unpatched decoy

environments with the full interactive power of the targeted victim server. The de-

135



coy environments dis-inform adversaries with honey-data and aggressively monitor

adversarial behavior.

While these capabilities offer potentially promising defense layers against deter-

mined adversaries skilled at evading traditional honeypots, the question of which

vulnerabilities to deceptively emulate or how to automatically evolve the deceptive

attack surface with evolving adversarial Tools, Techniques and Procedures (TTP) has

remained relatively unstudied. For example, Chameleon [145], Honeyd scripts [146],

and Cloxy [147] deployments all presently rely upon the human selection of vulnera-

bilities and versions, which is sub-optimal for waging long-term deceptive campaigns,

because it can result in deceptions becoming predictable and stale, potentially af-

fording attackers the opportunity and time to fingerprint and circumvent deceptive

applications. As new vulnerabilities emerge, attacks and probing activity change [148,

149, 150, 151], potentially rendering old deceptions less enticing to cybercriminals.

To overcome this disadvantage, this chapter proposes software deception steering

that proposed moving target defense techniques for counter reconnaissance and at-

tack intelligence gathering. We leverage application-level, deceptive attack responses

through honey-patching to continuously adapt the deception surface of the target

application. To this end, we designed and implemented Quicksand, an adaptive

software version emulation architecture, in which the set of fake vulnerabilities is dy-

namically re-selected to increase the likelihood of deceiving and entrapping attackers.

Based on the vulnerability context (e.g., vulnerability risk scores, attack history),

Quicksand chooses to emulate a particular software version with a particular set

of (fake) vulnerabilities. This moving deception surface undermines the attacker’s

ability to identify and detect deceptions, and increases the likelihood of gathering

high-quality threat data reflective of advanced attacks by skilled adversaries (rather
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than merely well-known attacks by unskilled adversaries, for which threat data is less

useful). To summarize, our work makes the following contributions.

• We propose a moving target approach to cyber-deception that dynamically

honey-patches software, rendering it less predictable and more robust against

attackers’ anti-deception efforts.

• We propose, design, and implement an effective version-control strategy to facil-

itate patch re-selection and automatically resolve source-level conflicts between

patches.

• We model the software emulation process as a Bayesian Stackelberg Game

(BSG), similar to the one described in Chapter 3, to infer effective movement

strategies that account for pragmatic aspects of deception, including the utility

of intelligence-gathering actions, impact of vulnerabilities, cost of patch deploy-

ment, the complexity of exploits, and the attacker model.

6.1 Overview

First, we outline our new moving deception maneuver, followed by primary chal-

lenges and corresponding design decisions for software deception steering. Finally, we

summarize background literature and our threat model.

6.1.1 Software Deception Steering

We define deception steering as the use of cyber deception for manipulating ad-

versaries into revealing threat intelligence useful for detecting and thwarting future

attacks. Leveraging vulnerability metadata and intrusion alerts collected at the net-

work perimeter, Quicksand dynamically adapts the target application to emulate a
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honey-patch for CVE-2014-6277

1      ...

2      if (legal_identifier (name))

3      …

4      else 

5      {

6          last_command_exit_value = 1;

7          report_error (…);

8      }

9

10

1      ...

2  - if (legal_identifier (name))

3  + if (absolute_program (tname) && (posixly_correct == 0 || legal_identifier (tname)))

4      …

5      else 

6      {

7         last_command_exit_value = 1;

8         report_error (…);

9      }

10

1      ...

2      if (absolute_program (tname) && (posixly_correct == 0 || legal_identifier (tname)))

3      …

4      else 

5      {

6         last_command_exit_value = 1;

7   -     report_error (…);

8   +    hp_fork();

9   +    hp_skip(report_error (…));

10    }

CVE-2014-6277
patch for CVE-2014-6277

CVE-2014-6277-hp

clones attack session to decoy environmentclones attack session to decoy environment

Figure 6.1: Patch and honey-patch for CVE-2014-6277 (abbreviated), and dependen-

cies between them denoted by dashed arrows

particular software version, with a particular set of honey-patched vulnerabilities (and

all other known vulnerabilities regular-patched), a particular set of features/modules

enabled, and a particular guest OS version in decoys.

The scope of adaptation can go beyond the application and host boundaries; for

instance, perimeter defenses (if any) can also be reconfigured to intentionally allow

previously filtered attacks to reach the honey-patch. This reconfiguration need not

happen live: it can be re-selected during nightly reboots, for example. The selections

are based on which configuration is likely to gather the most useful threat data given

the history of past attacks.

6.1.2 Design Principles

Software deception steering requires a patch management framework that facili-

tates software version composition and minimizes source code-level conflicts between

patches. Quicksand defines honey-patches as modifications to their corresponding

regular, vendor-supplied patches. For instance, Figure 6.1 exemplifies a vulnerability

causing the GNU Bash shell to improperly parse function definitions in the values of

environment variables [152]. Before the patch, the vulnerable shell interpreter allowed

remote attackers to execute arbitrary code or cause a denial of service on the victim’s
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machine. The patch, named CVE-2014-6277 in this example, fixes the vulnerabil-

ity by extending the check for what constitutes a legal function identifier to include

some extra sanity checks (Lines 2–3 in the patch code, depicted in diff style). The

honey-patch CVE-2014-6277-hp modifies the original patch to fork attacks onto decoy

environments while impersonating the unpatched code (Lines 8–9 in the honey-patch

code) to deceive adversaries. Encoding honey-patches in this manner naturally models

the dependency among honey-patches, their corresponding patches, and unpatched

source code. It also makes patch/honey-patch pairs conflict-free by construction,

greatly simplifying the task of composing new versions of the target application.

Patch dependencies (denoted by dashed arrows between patches) are calculated

based on how patches affect source code rather than by the order in which they are in-

troduced into the codebase. This removes the temporal constraint among patches and

enables the selection of patch sets based on their semantic dependencies. This patch

dependency model is implemented in the Darcs version control system [153], which

our software version-emulation architecture leverages to select consistent, conflict-free

application versions for deployment.

6.1.3 Background

We provide a brief overview of work on honey-patching and understanding the

threat model considered in this chapter.

Honey-patching

Prior work has observed that many vendor-released software security patches can be

honeyed by replacing their attack-rejection responses with code that instead maintains

and forks the attacker’s connection to a confined, unpatched decoy [144, 154]. Such
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honey-patching retains the most complex part of the vendor patch (the security check)

and replaces the remediation code with some boilerplate forking code [155], making

it easy to implement upon release of new security patches.

This embedded deception offers some important advantages over conventional

honeypots. Most significantly, it observes attacks against the defender’s genuine

assets, not merely those directed at fake assets that offer no legitimate services. It

can, therefore, capture data from sophisticated attackers who monitor network traffic

to identify service-providing assets before launching attacks, who customize their

attacks to the particular activities of targeted victims (differentiating genuine servers

from dedicated honeypots), and who may have already successfully infiltrated the

victim’s network before their attacks become detected.

Threat Model

Attackers in our model submit malicious inputs intended to probe and exploit vul-

nerabilities on victim networked services. We assume most attackers rely upon a

mix of vulnerabilities, only some of which are known to defenders. For example, a

skilled attacker might first try to exploit known vulnerabilities, only escalating to

more potent, defender-unknown vulnerabilities (e.g., 0-days) once they becomes con-

fident that their activities are not being monitored. Attack payloads might be unique

and therefore unknown to defenders. Such payloads might elude network-level moni-

tors and are therefore best detected at the software level at the point of exploitation.

We also assume that attackers might use one payload for reconnaissance but reserve

another for the final attack. Misleading the attacker into launching the final attack is

useful for defenders to discover the final attack payload, which can divulge attacker

TTPs and goals not discernible from the reconnaissance payload alone.
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Figure 6.2: An overview of Quicksand.

While our general approach is potentially applicable to arbitrary networked soft-

ware, in this work we focus on protecting services possessing strictly user-level privi-

leges, and that must, therefore, leverage software bugs and kernel-supplied services to

perform malicious actions, such as corrupting the file system or accessing other users’

memory to access confidential data. Quicksand therefore instruments user-level

applications with deceptive defensive code without modifying the OS or VM.

6.2 System Design

Figure 6.2 depicts Quicksand’s architecture. The patch conflict solver generates

conflict-free candidate patch sets for version emulation. An analysis and correlation

component ingests and maintains vulnerability metadata from the National Vulner-

ability Database (NVD), parses intrusion alerts, and correlates them with intrusion

signature metadata. The patch set selector module leverages a game-theoretic engine

to select which version of the software should be deployed based on the aggregated

data. The version deployment module then uses this information to synthesize and

deploy a new version of the application, including the specification of the target mod-

ules and environment. This process executes repeatedly, and its trigger threshold can
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be fixed, random, or dynamically adjusted (e.g., based on evidence and severity of

intrusion alerts collected at the network perimeter).

Patch Theory

Darcs is a change-based version control system. In contrast to conventional history-

based version control systems (e.g., Subversion, Git, CVS), which represent repository

states as file trees, the state of a Darcs repository is defined by the set of patches it

contains. This facilitates a cherry-picking operation—one that is not constrained by

temporal dependencies among patches—that adds flexibility to our patch set selection

model. Cherry-picking can be defined in terms of Darcs’ underlying patch theory [156,

157], summarized as follows:

Definitions

The state of a repository is called a context. We write oAa to denote that a repository

moves from context o to context a via patch A. Patches are usually stored sequentially,

and for any consecutive pair of patches, the final state of the first patch must be

identical to the initial state of the second patch. A sequence of patches is written in

left to right order, such as oAaBbCc (or simply ABC if we omit contexts). Parallel

patches share a common initial context and diverge to two different states (A ∨B).

Inversion

Every Darcs patch is invertible, affording the application of patches in either forwards

or backwards directions to reach a particular context: (AB)−1 = B−1A−1. In par-
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p1 p2 p3 p4 p5

Figure 6.3: A repository state showing patch dependencies.
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Figure 6.4: Operations illustrating (a) change-based patch cherry picking, (b) patch

obliteration and consistency, and (c) patch management: patch set B denotes the

set of patches making up the base source code of the software; patch dependencies

pointing to it have been omitted.

ticular, AA−1 has no effect, and (A−1)−1 = A. Anti-parallel patches have different

initial states yielding the same context (A−1 ∧B−1).

Commutation

The commutation of patches A and B is represented by AB ↔ B′A′, where A′

and B′ are intended to perform the same change as A and B. Intermediate states
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may differ however: oAaBb ↔ oB′xA′b. A merge operation is defined as a pairwise

computation, taking two parallel patches and converts them into a pair of sequential

patches: A ∨B =⇒ AB′ ↔ BA′.

Cherry picking

Patch cherry picking refers to the ability to pull patches from a repository regardless

of the order in which they were originally pushed into the repository. To illustrate,

consider the repository state depicted in Figure 6.3. The repository consists of patches

p1–p5, and the changes made by each patch are summarized underneath each patch.

The dependencies between patches (denoted by dashed arrows) are computed by

Darcs. Figure 6.4a illustrates cherry-picking for this particular example. Pulling

patches p1, p2, and p5 from the source onto the destination repository automatically

adjusts the selected patches to fit the new context (without p3 and p4). Darcs perform

such adjustments using its patch manipulation algebra to allow users to reason about

patches as sets, despite patches being stored as sequences internally.

Patch obliteration and consistency

Another advantage of patch commutativity is that patches can be obliterated (undone)

without rolling back patches that historically succeed them. In the example above,

patch p4 can be removed from the repository without undoing p5, as illustrated

in Figure 6.4b. To accomplish this, Darcs rearranges the sequence of patches by

commuting p4 with p5, and then removes p4. However, Darcs does not allow p3 to

be removed without first undoing p4; allowing this operation would constitute a patch

dependency violation and render the state of the repository inconsistent.
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Patch Management

Figure 6.4c illustrates our patch management strategy. Regular patches are pushed

(stored) into Darcs repositories base and hp, and honey-patches are stored into repos-

itory hp only. We call B the set of patches that constitute the base version of the

software (e.g., the initial commit, a specific tagged version of the application con-

taining all patches up to the tag). Candidate versions selected by the patch selection

module are stored as tags (e.g., v1–vn) by pulling specific patch sets from hp, which

allows them to be easily retrieved for version deployment.

This patch management strategy leverages the underlying Darcs infrastructure,

which automatically computes the transitive dependency relations for any given patch

selection. For example, when pulling honey-patch p4-hp, Darcs correctly pulls patch

set B and patches p3, p4, and p4-hp. This has the advantage of enabling a much

simpler patch set generation algorithm (see §6.3).

Alert Analysis and Correlation

The alert analysis and correlation workflow pre-process vulnerability and environmen-

tal data to generate contextual information for patch set selection. First, intrusion

alerts are parsed, and each alert class is annotated with descriptive statistics and

target information. In the second step, the correlation module parses the intrusion

detection system’s signature map to extract the signature information for each alert

object and cross-references it with the corresponding CVE identification derived from

the reference field specified in the alert metadata. This step additionally filters in-

trusion alerts whose signatures target vulnerabilities that have not been identified as

CVEs. The last step consults vFeed [158] to look up common vulnerability and exploit

databases (e.g., CVSS, CWE, exploit-db) to aggregate threat intelligence metadata
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1 { cve ID : CVE−2014−6277,

2 t a r g e t s : {( ’ 192 . 168 . 134 . 150 ’ , 80) , ( ’ 192 . 168 . 134 . 139 ’ , 8080) , . . . } ,

3 c v s s : { ’ v e c t o r ’ : ’CVSS : 3 . 1 /AV:N/AC: L/PR:N/UI :N/S :C / . . . ’ } ,

4 cwe : { i d : ’ cwe−78 ’ , term : ’OS Command I n j e c t i o n ’ } ,

5 cpe : { ’ cpe : / a : gnu : bash : 2 . 0 2 . 1 ’ , ’ cpe : / a : gnu : bash : 2 . 0 1 . 1 ’ , . . . } ,

6 pub l i s h e d : 2014−09−24T14 :48 :04 .477 −04 :00 ,

7 p u b l i c e x p l o i t : ’ y e s ’ ,

8 count : 115 }

Listing 6.1: Alert object containing threat metadata

(e.g., vulnerability risk scores, exploit availability) and alert objects, which are used

by the game-theoretic decision engine during the version selection process. Listing 6.1

shows an alert object containing threat metadata for CVE-2014-6277.

6.3 Moving Target Defense for Software Deception

To enable a truly dynamic system that makes it difficult for an adversary to finger-

print a deployed patch, Quicksand’s patch selection process is built atop a moving

target’s defense-in-depth strategy combining cyber agility and honey-patching. In the

context of software deception steering cyber maneuvers, we discuss the three com-

ponents of this defense strategy described in Chapter 1: configuration set C, timing

function T , and movement strategy M .

Configuration Set

The effectiveness of software deception steering depends on the selection of a set

of code versions (with honey-patches) that can be deployed at any point in time. This

requires each code version to be conflict-free.
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Conflict-free Code Versions

Conflict in our system is defined by the following syntactic rule: if (honey-)patch A

and (honey-)patch B prescribe different contents for the same line of code, then A

and B cannot coexist automatically in the same code version. A code version can be

viewed as an element in the power-set of patches, i.e., v ∈ ℘(Π). Thus, pruning this

power set based on the pair-wise definition of conflict between patches results in the

configuration set C for the MTD.

Algorithm 4 details (in pseudocode) the algorithm for generating conflict-free code

versions (or patch-sets) given the inputs Π representing the set of available security

patches, the base repository B containing regular patches, and the repository HP of

honey-patches. Lines 4–5 initializes the conflict-set cs to be empty, and a temporary

repository ∆ as a copy of B. The algorithm then populates cs with all conflicting

patch pairs ∈ Π × Π (or Π2) by checking the result of merging the corresponding

honey-patch pair from HP into ∆ and then resetting ∆ between each merge operation

(lines 6–11). Line 12 removes the temporary repository. Finally, in Line 13 the set of

conflict-free patch sets is generated by pruning out all code versions from ℘(Π) that

contain conflict-pairs. While complex pruning rules (such as allowing honey-patches

only to releases officially reported in the Common Platform Enumerations database)

can be specified, it reduces the cardinality of the configuration settings and therefore

the available options for the cyber maneuver.

Timing Function

Quicksand uses an event-based timing function T . In this setting, when alerts

are triggered by our system, we use it to compute the existence of a particular attacker

type (discussed in the next section) and adapt our current deception strategy given
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Algorithm 4 Conflict-free patch set generation algorithm

1: procedure

2: Given Π: patch set, B: base repository, HP : honey-patch reposi-

tory,

3: Output(set of conflict-free patch sets)

4: cs ← ∅

5: ∆← B

6: for (p1, p2) ∈ Π2 do

7: if ¬pull({p1, p2},HP ,∆) then

8: cs ← cs ∪ {(p1, p2)}

9: end if

10: obliterate(’[.*]-hp$’, ∆)

11: end for

12: remove(∆)

13: return {S ∈ ℘(Π) |S2 ∩ cs = ∅}

14: end procedure

this knowledge. In scenarios where alerts are ubiquitous, we consider a hybrid T that

uses aggregate alert information over a time-period to modify the movement strategy.

6.3.1 Game-theoretic Movement Function

Given the set of conflict-free code versions, the system must decide which version

is to be deployed at the time of switching. To this end, we first consider a game-

theoretic modeling of the interaction between an adversary and Quicksand. Then,

we define an optimal deception selection strategy and describe methods to compute

it.
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In real-world settings, defenders often target adversaries having a particular set

of characteristics. Curating the patch set selection strategy to the nuances of this

adversarial profile thus results in more effective countermeasures. For example, it is

ineffective to honey-patch only older, nearly obsolete vulnerabilities to gather threat

intelligence about expert adversaries armed with the newest exploits. To address this

concern, we model the problem as a two-player Bayesian Stackelberg Game (BSG)

inspired by prior MTD web defense models [20].

Our BSG can be defined as an n-tuple 〈D,A, AD, AA, RD, RA, P 〉 where,

• D denotes the defender,

• A = {A1, . . . ,Aθ} denotes the θ types of attacker,

• AD and AA = {AA1 , . . . , AAθ } denote the action-sets A of the players,

• RD = {RD1 , . . . , RDθ } and RA = {RA1 , . . . , RAθ } denote their utilities (with the

subscripts representing the utility of the players corresponding to the adver-

sary’s type), and

• P = {P1, . . . , Pθ} denotes a probability distribution that represents the likeli-

hood of facing each attacker type.

Note that this is similar to the BSG model defined in Chapter 3 but without switching

costs. Thus, similar to [61, 20], our goal is to infer a robust deception strategy, in

expectation, against all attacker types. Next, we discuss how each of these model

parameters is obtained and use real-world examples to elucidate the descriptions.

Players (D,A). The defender D represents the administrator who sets up the sys-

tem, inspects reported alerts, and chooses to deploy a particular deception measure.
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The attacker A has three types according to skill set level—script kiddie (A1), early

adopter (A2), and APT attacker (A3). As the names suggest, A3 is an expert who

spends time in identifying vulnerabilities against a system, whereas A1 only uses

attacks that have a publicly available implementation of exploits, and A2 is biased

towards exploits that are trending. A more formal distinction follows in our discussion

of player action sets.

Actions (A). The defender’s actions AD = C = {v1, . . . , vn} consist of the n feasible

candidate patch-sets found using Algorithm 4. A defender can choose any of these

actions (also referred to as a pure strategy) at any point in time. Given the patch

sets used by the defender, we compile a list of known exploits E that can be used

by an attacker. We enumerate the exploits against our system in Table 6.1 and

consider subsets of E, using the published and the public exploit fields in the

metadata object of the exploit (see Listing 6.1), to describe the exploits available to

each attacker type.

The script-kiddies (A1) attack set consists of CVEs that have a known public

exploit available. The early-adopters (A2) attack set comprises vulnerabilities that

have a public exploit available for which the published date is less than t = 5 years.

Thus, A2’s attack set includes the last two CVEs in the list shown in Table 6.1 (i.e.

|E2| = 4). The APT attacker (A3) can write exploits for any of the existing CVEs in

the list, and has all the attack actions available (i.e. |E3| = |E| = 12).

Utilities/Rewards (R). To design the utility for the players, we primarily consider

metrics that are a part of the Common Vulnerability Scoring System (CVSSv3) [159].

We first define a generic reward structure and discuss how it can capture the various
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Vulnerability Description Software
CVSS

Impact (I) Exploitability (E) Overall (O)

CVE-2014-0160 Information leak Openssl
5.4 3.7 8.9

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N/E:H/RL:O/RC:C/CR:H/IR:X/AR:X/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:N/MA:N

CVE-2012-1823 System remote hijack PHP
3.4 3.7 7.0

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:L/A:L/E:H/RL:O/RC:C/CR:M/IR:M/AR:M/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:L/MI:L/MA:L

CVE-2011-3368 Port scanning Apache
1.4 3.5 4.8

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N/E:P/RL:O/RC:C/CR:M/IR:X/AR:X/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:L/MI:N/MA:N

CVE-2014-6271 System hijack Bash
6.1 3.7 9.5

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H/E:H/RL:O/RC:C/CR:H/IR:H/AR:H/MAV:N/MAC:L/MPR:N/MUI:N/MS:C/MC:H/MI:H/MA:H

CVE-2014-6277 System hijack Bash
6.1 3.7 9.5

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H/E:H/RL:O/RC:C/CR:H/IR:H/AR:H/MAV:N/MAC:L/MPR:N/MUI:N/MS:C/MC:H/MI:H/MA:H

CVE-2014-0224 Session hijack and information leak Openssl
5.9 2.1 7.5

CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:N/E:F/RL:O/RC:C/CR:H/IR:H/AR:X/MAV:N/MAC:H/MPR:N/MUI:N/MS:X/MC:H/MI:H/MA:X

CVE-2010-0740 DoS via NULL pointer dereference Openssl
2.1 3.5 5.5

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L/E:P/RL:O/RC:C/CR:X/IR:X/AR:H/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:N/MI:N/MA:L

CVE-2010-1452 DoS via request that lacks a path Apache
1.4 3.5 4.8

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:L/E:P/RL:O/RC:C/CR:X/IR:X/AR:M/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:N/MI:N/MA:X

CVE-2016-6515 DoS via request that lacks a path OpenSSH
5.4 3.7 8.9

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H/E:H/RL:O/RC:C/CR:X/IR:X/AR:H/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:N/MI:N/MA:H

CVE-2016-7054 DoS via heap buffer overflow Openssl
5.4 3.7 8.9

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H/E:H/RL:O/RC:C/CR:X/IR:X/AR:H/MAV:N/MAC:L/MPR:N/MUI:N/MS:X/MC:X/MI:X/MA:H

CVE-2017-5941 System hijack Node.js
4.0 3.7 7.6

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H/E:H/RL:O/RC:C/CR:L/IR:L/AR:L/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:H/MA:H

CVE-2017-7494 System hijack Samba
5.9 3.7 9.4

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H/E:H/RL:O/RC:C/CR:H/IR:H/AR:L/MAV:N/MAC:L/MPR:N/MUI:N/MS:U/MC:H/MI:H/MA:H

Table 6.1: Summary of (honey-)patchable vulnerabilities with the corresponding

CVSS scores.

aspects of cyber deception. Then, we highlight how we can obtain numeric values

that represent the utility of the players.
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The utility structure for a player, given that defender D deploys code version v

and attacker Ai executes an exploit e ∈ Ei, is as follows:

RDi (v, e) =





+rDi (v, e)− c(v) if e-hp ⊂ v

−ID(e)− c(v) otherwise

RAi (v, e) =




−rAi (v, e)− c(e) if e-hp ⊂ v

+IA(e)− c(e) otherwise

In the first case, where the code version deployed has a honey-patch for exploit e that

the attacker decides to exploit, the reward for the defender has two components. First,

D gets a positive reward of rDi (v, e) because the attacker Ai was trapped using the

honey-patch. This value is specific to the exploit being honey-patched as it needs to

account for its intelligence-gathering worth (e.g., IPs used by the attacker) combined

with the actionable protective measures that can be taken (e.g., add such IPs to

the firewall deny-list). In this regard, given the attacks in our system, we consider

the following ordering: rDi (v,DoS) ≤ rDi (v,Port Scanning) < rDi (v, Info Leakage) <

rDi (v, System Hijacking).

To simplify our analysis, we omit some of the context-specific information

about the operating environment (e.g., the value of targeted assets, mission-critical

requirements) and attacks (e.g., targeted scanning, distributed vs. targeted DoS);

this allows us to disregard the equality conditions and design uniformly spaced

rewards in the range [0,maxe I
D(e)]. Second, the value c(v) represents the cost of

deploying a particular honey-patch on the Quality of Service (QoS) metrics on a

system. We assume that all conflict-free patch sets v have the same cost and ignore

the term altogether (as these values cannot incentivize D to pick a particular code

version based on QoS metrics).
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Attacker Ai, when trapped by a honey-patch, incurs the cost of crafting and

executing the exploit c(e). This cost is dependent on the complexity of an attack

(represented by its exploitability score) and the temporal metrics (what kind of an

exploit or patch is available and how reliable the source is). Thus, we multiply the

exploitability score (ES) of CVSS with the temporal metrics to obtain c(e), similar to

the way temporal scores are obtained using the base score (BS). The other negative

reward rAi (v, e) captures D gaining knowledge of an attacker’s TTPs. In our model,

we assume that the attacker is unaware of which vulnerabilities are honey-patched,

and this rAi (v, e) = 0 ∀i ∈ {1, . . . , θ}. One may choose to assign different scores

to different players. For example, this can be used to reflect the fact that an APT

attacker (A3) is better equipped to detect the deception.

In the second case, when v does not contain a honey-patch for e, the attacker

can either gain reconnaissance if a regular patch is deployed by leveraging the attack

failure information or cause full impact without getting caught if no regular patches

are available (for relatively new CVEs). For the latter case, D receives a negative

utility against Ai with magnitude equal to the impact score, while Ai receives a

positive utility with magnitude equal to the overall score. The overall score trades off

the impact of the attack alongside the complexity of constructing and executing it.

Table 6.1 shows the CVSSv3 metrics corresponding to the individual exploits of the

formulated game, leveraged to calculate the utilities. For the former case, D’s loss is

a fraction of the impact score for giving out attacker info, whereas Ai considers its

effort cost and the utility of gathering the information about patches.

Attacker Type Probabilities (P ). We start with an initial probability distribu-

tion over attacker types (denoted as 〈Pr(A1), . . . ,Pr(Aθ)〉) provided by analysis of

historical data by security experts and historical data from similar systems. Based
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on an alert a raised by the analysis and correlation module, we update the attacker

type probabilities Pi using the Bayesian rule over Pr(Ai):

Pi = Pr(Ai|a)

= αPr(Ai) · Pr(a|Ai)

= αPr(Ai) ·
∑

e

Pr(a|e) · Pr(e|Ai)

= αPr(Ai) ·
∑

e

Pr(a|e) · I(e ∈ Ai)

where α represents the normalization factor and I represents an indicator function

that equals 1 if the condition is met and 0 otherwise. Ideally, the value Pr(e|Ai)

should converge to the strategy of an attacker type if they were to behave rationally.

However, an alert may be observed for any of the available exploits, even when it is

a sub-optimal choice for a rational adversary.

Hence, we account for this irrationality by using an indicator function. Further,

if an alert can be generated by multiple exploit actions e, an attacker type with a

larger number of such exploits should be assigned higher probability. Lastly, while

some alert systems, such as anomaly detection systems based on machine learning,

may detect certain exploits imperfectly, we limit ourselves to deterministic detection

mechanisms Pr(a|e) ∈ {0, 1}.

As an example, consider the use of a CVE from 2014 that is distinctive in observ-

ing a particular system alert. Given A2 cannot perform this attack action, P2 becomes

zero. This probability is distributed between P3 and P1, as A1 or A3 may have gen-

erated this alert. Thus, the initial distribution 〈0.4, 0.4, 0.2〉 becomes 〈0.67, 0, 0.33〉.
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6.3.2 Strategy Computation

A strong threat model must account for an adversary capable of performing recon-

naissance on the targer. As discussed in the previous chapter, this boils down to the

use of Stackelberg Equilibrium, which encodes the assumption that the defender acts

as a leader while the attacker, who is aware of the defender’s deployment strategy,

assumes the role of a follower [20, 35]. In this setting, the defender plays a mixed

strategy (i.e., a probabilistic strategy over his actions) making it impossible for the

attacker to fingerprint the deception strategy in place at any given point in time.

In this Bayesian Stackelberg Game setting, we can calculate the optimal movement

strategy (~x) for the defender by maximizing D’s expected utility, as follows,

∑

i

∑

v

∑

e

Pi xv q
i
e R

D
i (v, e) (6.1)

where each attacker Ai’s strategy ~q i is calculated with the knowledge of the de-

fender’s strategy ~x by maximizing
∑

e

∑
v xv q

i
e U

A
i , subjected to constraints that ~q i

represents a probability distribution. Both optimizations—maximizing the defender’s

expected utility given the attacker maximizing their utility—can be folded into a sin-

gle optimization problem [103]. As per our discussion in Section 3.3, we use the

Mixed-Integer Quadratic Program (MIQP) formulation instead of the Mixed Integer

Linear Program (MILP) for (1) efficiency reasons and (2) calculating the strategy of

version emulation in Quicksand. At the start of each period, we use this mixed strat-

egy to select a particular code version at random and proceed with its deployment.

Version Deployment

Upon completion of patch selection, Quicksand deploys a new version of the appli-

cation into the target environment. Figure 6.2 outlines the steps taken to deploy an
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1 [Apache -1]

2 app = apache

3 base_repo = ../ data/base

4 hp_repo = ../ data/hp

5 deploy_repo = ../ data/deploy

6 configure_command = make

7 install_command = make install

8 patches = CVE -2014 -0160:CVE -2014 -6271: \

9 CVE -2014 -6277:CVE -2014 -7169: ...

10

11 [Apache -2]

12 app = apache

13 ...

14

15 [OpenSSL]

16 app = openssl

17 ...

Listing 6.2: Quicksand example configuration file

application. The first step consists of creating a working repository for the applica-

tion, by first pulling all patches from base into target, and then pulling only the

selected honey-patch subset into target. This yields a working repository state that

is tagged with the selected application version. The final step consists of building the

target application from sources, using a user-supplied configuration as supplemental

input. The configuration parameters are specified per application, as shown in the

configuration file illustrated in Listing 6.2, to set up the built environment and release

the new application version.
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6.4 Implementation

We developed an implementation of Quicksand for the 64-bit version of Linux.

The implementation consists of four Python components: the repository handler mod-

ule consists of about 150 lines of code and wraps Darcs CLI [157] to offer an API

to access the version control system. The analyzer component consists of 90 lines of

code, and leverages py-idstools [160] to parse IDS signature maps and events sourced

in unified2 format (a serialized binary stream format specification for IDS events),

and vFeed [158] to fetch and aggregate threat metadata to alert objects. The patch se-

lector module consists of an additional 140 lines of code, and the version deployment

module adds about 80 lines of code to the system. Our implementation depends

on a deployment environment that has been pre-configured with a honey-patching

framework, along with its process sandboxing and monitoring facilities [144].

6.4.1 Conflict-free Patch Sets

Table 6.2 summarizes the conflict-free patch sets used as inputs to our game-

theoretic decision process. These serve as candidate versions for patch selection, and

encode information about affected software, such as application version compatibil-

ity. Each patch set implicitly encodes the availability of regular (e.g., CVE-2017-7494)

and honey (e.g., CVE-2017-7494-hp) patch selections. Moreover, our patch reposi-

tory maintains patch metadata that is used to filter unpatchable patch sets—patch

selections for which a version deployment is infeasible due to patch compatibility and

operation requirements.
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Table 6.2: Summary of conflict-free patch versions (-hp implied).

# Patch Set Affected Software (CPE)

1 CVE-2014-0160 openssl:1.0.1f (≤)

2 CVE-2014-6271, CVE-2014-6277 bash:[4.3, 3.2.48, 2.0.5, 1.14.7] (≤)

3 CVE-2014-0160, CVE-2014-6271, CVE-2014-6277 openssl:1.0.1f (≤), bash:[4.3, 3.2.48, 2.0.5, 1.14.7] (≤)

5 CVE-2011-3368 http server:[2.2.21,2.0.64,1.3.68] (≤)

6 CVE-2010-1452, CVE-2011-3368 http server:2.2.15 (≤)

7 CVE-2012-1823 php:[5.4.1, 5.3.10] (≤)

8 CVE-2016-6515 openssh:7.2 (≤)

9 CVE-2014-0224 openssl:[1.0.1f,1.0.0l,0.9.8y] (≤)

10 CVE-2014-0160, CVE-2014-0224 openssl:1.0.1f (≤)

11 CVE-2010-0740 openssl:0.9.8m (≤)

12 CVE-2010-0740, CVE-2014-0224 openssl:0.9.8m (≤)

13 CVE-2016-6515, CVE-2014-0224
openssh:7.2 (≤),

openssl:1.0.1f (≤)

14 CVE-2016-6515, CVE-2010-0740
openssh:7.2 (≤),

openssl:0.9.8m (≤)

15 CVE-2016-6515, CVE-2014-0224, CVE-2010-0740
openssh:7.2 (≤),

openssl:0.9.8m (≤)

16 CVE-2017-5941 node-serialize:0.0.4 (≤)

17 CVE-2017-7494 samba:[4.1.23, 4.0.26,3.6.25,3.5.22] (≤)

6.4.2 Simulation Results

Table 6.3 highlights simulation results obtained using three different movement

strategies: static deception, uniform random strategy (URS), and Bayesian Stackelberg

Game (BSG). For simulation, we assume that the four latest vulnerabilities cannot be

patched due to lack of officially available patches; the defender faces maximum impact

for these and smaller impact for other vulnerabilities that are regularly patched due
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Strategy Expected Utility ↑ # Patch-sets used ↓

Static −5.87 1

URS −1.66± 0.81 17

BSG −1.26± 0.89 11

Table 6.3: Benefits of different patch selection strategies.

to leakage of reconnaissance information. The reward values for the defender shown

in Table 6.3 are plotted across 12 different runs. In each run, we consider a distinct

exploit is detected and update the beliefs over the attacker types accordingly.

In comparison to a static strategy that deploys the most profitable honey-patch

set, software deception steering, regardless of employed movement strategy, increases

system administrators’ expected utility. Although, in our game setup, the use of uni-

form random strategy (URS) (i.e., selecting either of the 17 versions with equal proba-

bility at deployment time) is sub-optimal when compared to the Bayesian Stackelberg

Equilibrium strategy. Further, the game-theoretic strategy identifies 6 code-versions

devoid of security benefits, significantly reducing the defender’s overhead of maintain-

ing all 17 patch-sets. While the patch-sets #12 and #14 are pruned-out as #15 is a

strict-subset, we also notice path-set #13 has a non-zero deployment probability. The

patch-sets {1, 8, 9, 10, 12, 14} are assigned zero-probability of deployment. Among the

patch-sets that have non-zero probabilities of deployment (on average across the 12

runs), 5 of them have the highest deployment probability of 14.4% and the patch-set

#7 has the lowest deployment probability of 1.1%.

While our game parameters are based on simulation results over rewards ob-

tained from security databases, human-subject case studies must be conducted to

understand the true benefits of this model. Thus, validation of Quicksand under
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these three movement strategies in empirical attack-defense exercises is an important

future direction.

6.5 Concluding Remarks

Our approach enhances vulnerability patching in software security with a

moving target defense technique that makes applications less predictable and more

robust against attackers’ anti-deception efforts. Toward this end, we designed and

implemented an adaptive, software version-emulation architecture in which the set

of honey-patched vulnerabilities in a target application is dynamically re-selected

to increase the likelihood of deceiving and entrapping attackers. Leveraging our

game-theoretic analysis that automates and optimizes (honey-)patch management,

our framework infers effective movement strategies based on contextual threat

metadata and attacker model.
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Chapter 7

MOVING TARGET DEFENSE FOR DEEP NEURAL NETWORKS IN

MACHINE LEARNING SECURITY

Table of Contents � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

C Attack and Exploration Surface Shifting in Machine Learning

t On-event switching

M Stackelberg Strategy of a Bayesian Normal-form Game

The recent popularity of machine learning in general and deep neural networks,

in particular, have made it an integral part of many modern software systems. While

its inclusion has improved the state-of-the-art in recognizing patterns and anomalies

across multiple data modalities, it has also introduced a new (and as we shall see,

an easy) attack surface for the adversary to exploit [6]. Defenses against adversarial

examples are designed to be effective against a certain class of attacks by either

training the classifier with perturbed images generated by these attacks or making it

hard for these attacks to modify some property of the neural network. Unfortunately,

this has evolved into a cat-and-mouse game and often, a state-of-the-art defense

mechanism is proven to be inadequate against a new class of attacks almost as soon

as it is published. Some recent works try to formulate the attack scenario as a min-

max adversarial game where the defender tries to minimize the loss while the attacker

tries to maximize it. They show the use of Projected Gradient Descent (PGD) for
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solving the inner (max) optimization can result in attacks that are extremely effective

in crippling the classification system and, at the same time, capture the characteristics

of many of state-of-the-art attacks [161]. They claim that robust training methods

that enforce classification to the same class when images are ε distance away from

any image in the training set results in high classification accuracy against adversarial

examples. Unfortunately, this has the side effect of bringing down the classification

accuracy on non-perturbed examples.

In this chapter, we take a novel view and design a meta-defense that can function

both as (1) the first line of defense against new attacks and (2) defense-in-depth

solution used in conjunction with any existing defense mechanism to boost the security

gains provided. To this end, we design Moving Target Defense (MTD) that randomly

selects a network from an ensemble of networks when classifying an input image

(randomization at test time), for boosting the robustness against adversarial attacks

(see Fig. 7.1). Precisely, our contributions can be highlighted as follows.

• MTDeep – an MTD framework for an ensemble of DNNs, which can be used

as a meta-level defense-in-depth mechanism, to bootstrap any existing defense

mechanism and increase the robustness of the classification system to different

classes of adversarial attacks.

• A Bayesian Stackelberg Game formulation with two players– MTDeep and its

users. We show that the Strong Stackelberg Equilibrium of this game results

in the optimal strategy for test-time selection of constituent networks in the

ensemble. The strategy maximizes the classification accuracy on regular as well

as adversarially modified inputs.
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Figure 7.1: MTDeep– Moving Target Defense for Deep Neural Networks. In this

example, an attacker fails at making an image classification system misclassify adver-

sarially perturbed MNIST examples. The adversary chooses to perturb the image of

a ‘0’ with an attack that works for the (green) Hierarchical Recurrent Neural Network

(HRNN) in the ensemble, but upon feeding it as input to MTDeep, the system rolls

dice to picks the (blue) Multi-Layer Perceptron (MLP) that correctly classifies the

input image to zero because the MLP was immune to the adversarial perturbation

crafted by the adversary for HRNN.
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• Empirical evaluation to show that MTDeep can be used as (1) a standalone

defense mechanism to increase the accuracy on adversarial samples by ≈ 24%

for MNIST, ≈ 22% for Fashion MNIST and ≈ 21% for ImageNET data-sets

against a variety of well-known attacks and (2) in conjunction with existing

defense mechanisms like Ensemble Adversarial Training, MTDeep increases the

robustness of a classification system (by ≈ 50% for MNIST). We also show that

black-box attacks (c.f. related work) on a distilled network are ineffective (in

comparison to white-box attacks) against the MTDeep system.

• Analysis of an ensemble of DNNs for MNIST data that elucidates how much

of a security gain MTDeep can provide. As a part of that analysis, we define

the concept of differential immunity, which is (1) the first attempt at defining

a robustness measure for an ensemble against attacks and (2) a quantitative

metric to capture the notion of attack transferability.

7.1 Background

In this section, we introduce to works on crafting adversarial inputs against deep

neural networks (at test-time) and defenses developed against them.

Attacks and Defenses for Deep Neural Networks

Gradient-based perturbations

Recent literature has shown multiple ways of crafting adversarial samples for a DNN

[162, 163, 6, 161]. In these works, either (i) the input features that have high in-

fluence on the DNN’s loss (measured via the partial derivatives) are modified by a

small amount to maximize the DNN’s loss function and therefore make the classifier
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misclassify them, or (ii) the geometric space around a point is examined to find the

closest class-separation boundary and generate perturbation vectors that push the

modified image to the other side of this boundary. Similar to a chosen-ciphertext

attack, these attacks assume that the test image which is to be modified is available

beforehand. Furthermore, they assume the availability of complete knowledge about

the classification network.

Black-box attacks

The threat model of black-box attacks considers the attacker does not have access to

the network parameters but can interact with it. Often, attackers can train a small

substitute model trained using selected inputs and the output labels provided by

the network being attacked [164], similar to chosen-plaintext attacks. Surprisingly,

attacks on this substitute model generalize well to the actual network [6]. Recent

work on zeroth-order optimization has shown it is possible to create black-box attacks

without the need for substitute models [165].

Defenses

Defense techniques against the two types of attacks described above commonly in-

volve (1) generating adversarial perturbed training images using one (or all) of the

attack methods described and then (2) using the generated images along with the

correct labels to fine-tune the parameters of the DNN during training. This helps

the DNN to correct its bias in some of the unexplored areas of the high dimensional

space, reducing the effectiveness of the adversarial perturbations. Ensemble adver-

sarial training [166] and stability training [167] are two improvements on this defense
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technique. 1 Besides these, researchers have developed defense mechanisms like

gradient masking [168], defensive distillation [169] and dimensionality reduction &

‘anti-whitening’ [170]. Some of these defense mechanisms, similar to trends in cyber-

security, have been rendered ineffective due to the discovery of stronger attacks (eg.

[171]). We do not consider these methods further since our proposed framework can

be used in conjunction with any of these to improve their security guarantees. Later

we will piggyback our proposed MTD with the state-of-the-art defense mechanism

that uses adversarial training with the Projected Gradient Descent (PGD) attack to

improve it further.

Universal perturbations

This DNN-specific perturbation when added to any input image, makes a DNN mis-

classify it [172]. This attack is based on the DeepFool attack [162] and although

it is often time-consuming to generate, only one “universal” perturbation per net-

work needs be computed. Moreover, the authors show that adversarial training is

ineffective in increasing robustness against these attacks. Also, other state-of-the-art

defense mechanisms ([166, 161]) have not shown that they can mitigate this attack.

The newer class of such DNN-specific attacks such as Adversarial Patches [173] and

BadNets [174] relax the constraint that the perturbation is imperceptible to a hu-

man. We show that randomly switching between networks of an ensemble to classify

an input image, as MTDeep does, can prove to be an effective defense against these

attacks because these attacks are network-specific and often have low transferability.

1Ensemble Adversarial Training uses an ensemble to generate adversarially perturbed
examples for all the constituent networks and uses them to strengthen a single network
[166]. Unlike us, it does not use the ensemble at classification time.
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There has been some effort in trying to protect machine learning systems against

attacks using randomization techniques at test time [175]. Unfortunately, these are

not general enough to be used for DNNs. Furthermore, these mechanisms try to

prevent misclassification rates under attack and end-up affecting the classification

accuracy on non-adversarial or legitimate test inputs.

Existing Randomization or Ensemble-based Defense Attempts

There has been some effort in trying to protect machine learning systems against

attacks using randomization techniques [175]. Unfortunately, these are not general

enough to be used for DNNs. Furthermore, these mechanisms try to prevent mis-

classification rates under attack and end up affecting the classification accuracy on

non-adversarial or legitimate test inputs. Lastly, our approach is further supported by

previous research works that show the introduction of randomized switching makes it

harder for an attacker to reverse engineer a classification system with precision [176],

which is how most white-box attacks are constructed.

The general concept of DNN-based ensembles simply tries to increase classification

accuracy for legitimate users but provides no protection against adversarial examples

[177]. Ensemble Adversarial Training (EAT), as discussed above, trains a single clas-

sifier based on the adversarial inputs generated for all constituent networks in the

ensemble [166]. Thus, EAT is a single-classifier system opposed to being an ensem-

ble. Deviating from this, in [178], researchers propose an ensemble-based method to

detect adversarial samples for the MINST dataset. Note that, we can extend this

idea to design a voting based ensemble of DNNs to increase the robustness of the

overall classification system. Unfortunately, such voting based mechanisms for en-

sembles can be viewed as simply adding an extra pooling layer whose weights are
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equal to the weightage given to the votes of the constituent networks. For example,

consider we have an ensemble with two constituent DNNs (D1 and D2) for a three-

class classification problem (c1, c2, c3). Let us say that the classification result of D1

is given weight w1 and the classification result of D2 is given weight w2. One can

view this setup as an equivalent DNN D′ whose last layer has a connection from ci

classes of each constituent Dj to the output class ci of D′. At this point, all attacks

on a DNNs described above, generalize to these voting-based ensembles. Researchers

have also shown that an ensemble of vulnerable DNNs cannot result in a classifier

robust to attacks [179]. In contrast, MTDeep builds in an implicit mechanism based

on randomization at prediction time, making it difficult for an adversary to fool the

classification system.

A particularly exciting development of late [180] has demonstrated how an expo-

nentially large ensemble of models can be generated from a single model to provide

robustness against the transferability of attacks. This perfectly complements our

approach which leverages the concept of “differential immunity” of an ensemble to

provide the first line of defense against adversarial images. Lastly, note that earlier

works have proposed robustness measures only for a single network (either attack-

specific [181] or attack-independent [182]). We introduce the concept of attack-specific

robustness measures for an ensemble.

Although prior research has shown that the effectiveness of attacks can sometimes

transfer across networks [6], we show that there is still enough residual disagreement

among networks that can be leveraged to design an add-on defense-in-depth mecha-

nism by using MTD. In fact, recent work has demonstrated that it is possible to train

models with limited adversarial attack transferability [180], making our meta-level

defense approach particularly attractive.
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7.2 MTDeep: Moving Target Defense for Deep Neural Networks

As stated in the previous chapters, a Moving Target Defense (MTD) seeks to,

at every time instance based on a timing function t, randomly deploy a particular

configuration from a set of system configurations C. The attacker, who has a set

of attacks, tries to cripple the MTD system. As the attacker does not know which

system was specifically selected at a particular time instant, its attacks become less

effective (Figure 7.1). While randomization is essential for the effectiveness of MTD,

in the context of classification systems, it might end-up reducing the accuracy of the

overall system in classifying legitimate inputs drawn from the test-set because the

DNN has the highest accuracy may not always be chosen for classification. Thus, in

order to retain good classification accuracy and guarantee high security, we model

the interaction between MTDeep and the users as a Bayesian normal-form Game. In

this section, we describe the various elements of the game-theoretic model.

The Defender (D)

The defender (MTDeep) provides a service for the classification of images. The con-

figuration space for MTDeep is the DNNs in the ensemble that is trained on the

particular image classification task. Let C represent the set of neural network con-

figurations, which constitutes the defender’s pure-strategy set, i.e. MD = C. In the

ensemble we design for our experiments on MNIST and Fashion-MNIST datasets,

we have three networks C = {CNN, MLP, HRNN}. The networks, evident from

their names, are based on three different network architectures– Convolution Neural

Networks (CNN) [183], Multi-Layer Perceptrons (MLP) and Hierarchical Recurrent

Neural Networks [184]– all of which give reasonably high accuracy on the two data-

sets (Table 7.1). For experiments on the ImageNET dataset, we use six pre-trained
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Legitimate User (L)

MTDeep Classification Image

MLP 99.1

CNN 98.3

HRNN 98.7

Adversarial User (A)

FGMm FGMc FGMh DFm DFc DFh PGDm PGDc PGDh

3.1 20.39 38.93 1.54 89.8 93.83 0.00 49.00 61.00

55.06 10.28 71.39 98.87 0.87 98.55 78.00 0.00 90.0

25.12 27.24 11.43 95.38 83.17 3.66 23.00 51.00 0.00

(a) MNIST

Legitimate User (L)

MTDeep Classification Image

MLP 88.68

CNN 92.95

HRNN 89.16

Adversarial User (A)

FGMm FGMc FGMh DFm DFc DFh PGDm PGDc PGDh

21.47 15.64 25.11 8.1 87.45 88.28 1.00 12.00 57.00

23.42 6.07 34.76 88.21 5.37 92.86 32.00 3.00 61.00

29.44 43.53 14.85 74.9 87.64 9.57 41.00 60.00 0.00

(b) Fashion MNIST

Table 7.1: The actions of the players and the utilities of the two user types–L and A

for (a) the MNIST and (b) the Fashion-MNIST datasets. The utility of the defender

is exactly the same as that of L for the co-operative game against the player type

L and a hundred minus the utility of A in the constant sum game against A. The

classification accuracy of each constituent network against the most effective attack,

i.e. the worst case for each network, is highlighted in yellow.

networks that have won the image classifications over the last few years and have a

reasonable high accuracy on the data-set (see Table 7.2). It is worth emphasizing

that this ensemble of classifiers does not behave like well-known voting based ensem-

bles and at classification time, uses only a single network’s decision. 2 Formally, a

pure strategy for the defender corresponds to selecting a single constituent network

in the ensemble for each test input and use it for classification. A mixed strategy is a

probability distribution over the different pure strategies and on every test input, the

defender rolls a die (that represents the mixed strategy) to determine the constituent

network it will use for classification.

2As we will later see, they can be viewed as a randomized ensemble or a stochastic classifier.
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L

MTDeep Image

VGG-F [185] (92.9, 92.9)

CaffeNet [186] (83.6, 83.6)

GoogLeNet [187] (93.3, 93.3)

VGG16 [188] (92.5, 92.5)

VGG19 [188] (92.5, 92.5)

ResNet-152 [189] (95.5, 95.5)

Adversarial User (A)

UPV GG−F UPCaffe UPGoogLe UPV GG−16 UPV GG−19 UPRes

(6.3, 93.7) (28.2, 71.8) (51.6, 48.4) (57.9, 42.1) (57.9, 42.1) (52.6, 47.4)

(26.0, 74.0) (6.7, 93.3) (52.3, 47.7) (60.1, 39.9) (60.1, 39.9) (52.0, 48.0)

(53.8, 46.2) (56.2, 43.8) (21.1, 78.9) (60.8, 39.2) (60.2, 39.8) (54.5, 45.5)

(36.6, 63.4) (44.2, 55.8) (43.5, 56.5) (21.7, 78.3) (26.9, 73.1) (36.6, 63.4)

(36.0, 64.0) (42.8, 57.2) (46.4, 53.6) (26.5, 73.5) (22.2, 77.8) (42.0, 58.0)

(53.7, 46.3) (53.7, 46.3) (49.5, 50.5) (53.0, 47.0) (54.5, 45.5) (16.0, 84.0)

Table 7.2: Normal form game matrices for the defender and the User types A and

L in the ImageNET scenario against Universal Perturbation attacks. The worst case

classification accuracy of each constituent networks is highlighted in yellow. Similar

to Table 7.1, we notice that the attacks developed against a particular network is the

most effective attack against that network.

The Users (L, A)

The second player, in this game, is the user of the classification system. We divide

the user into two-player types–Legitimate User (L) and the Adversary (A). L tries

to input non-perturbed images (i.e. sampled from the expected test-set distribution

that is represented in the training-set data) to the MTDeep system for classification.

Given this is their only pure-strategy, |AL| = 1. The second type is the adversary

A who essentially tries to perturb input images such that the classification system

misclassifies these inputs. In our threat model, we consider a strong adversary who

knows the different architectures we use in our MTDeep system. This means they

can easily generate powerful white-box attacks for each of the networks in our system.

We let AA denote this set of attacks the attacker can generate against our system.

For MNIST and Fashion-MNIST, we consider three classes of white-box attacks– the

Fast Gradient Method (FGM), the DeepFool (DF) attack and the Projected Gra-
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dient Descent. 3 (PGD) attacks (see Table 7.1) while for ImageNET, we restrict

ourselves to universal perturbation attacks because the cost of constructing adver-

sarial perturbations for each test image is computationally intensive (see Table 7.2).

Each attack (a ∈ AA) is generated to cripple a particular constituent network in

the MTDeep ensemble (indicated using the sub-script) but used against each of the

defender’s constituent networks. They may or may not be equally effective for all the

configurations. In fact, for most the white-box attacks such as FGM and PGD, we

show that although they have some transferability across the different networks, none

can completely cripple all the networks (Table 7.1 and 7.2). MTDeep, as we will later

see, leverages this fact to boost the security against adversarial examples.

Bayesian Game Formulation

MTDeep randomly picks a network n (∈ AD) each time to classify an input image.

If we use a naive switching strategy, such as uniform random selection, to pick a

network whenever input is provided, we will have equal chances of choosing networks

that have (1) low classification accuracy or (2) high vulnerability to perturbed images

thereby being sub-optimal. Also, the attacker might eventually infer the defender’s

switching strategy and exploit the highly vulnerable configurations more often. Thus,

reasoning about the optimal strategy is important. Thus, we model the interaction

between the ensemble and the users as a Bayesian normal-form game, similar to our

game-theoretic model in Chapter 3.

Existing works such as adversarial training design defense methods against adver-

sarial attacks for DNNs formulate the problem as a zero-sum game where the attacker

3The the reward for PGD attacks are whole numbers because, in order to compute attack-based
perturbations in a reasonable amount of time, we evaluate its effectiveness for perturbing 100 samples
(as opposed to 10000 in the case of FGM and DF).
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tries to maximize the defender’s loss function by coming up with perturbed test ex-

amples that the network misclassifies, whereas the defender tries to reduce the loss

on these adversarially perturbed examples. Given these methods are defined for a

single neural network n, we can formally represent the objective as follows.

min
n

max
u

Ln(x+ u, y)

where u represents the adversarial perturbation and L represents the loss function.

Simply fine-tuning the classifier to have high accuracy on adversarially perturbed in-

puts often has the side effect of reducing the classification accuracy on non-perturbed

inputs from the test set [161]. In this paper, we move away from the zero-sum game

assumption and try to ensure that the defender minimizes the loss functions for both

types of inputs images– original test set images and the adversarially perturbed ones.

Formally, this would imply considering an optimization objective of the following kind

for the network n,

min
n

max
u

Ln(x+ u, y) + Ln(x, y)

Thus, we want MTDeep to be effective for L (denoted by the second term and propor-

tional to minimizing the loss on the original test set) and, at the same time, increase

the accuracy of classification for the perturbed images (denoted by the first term and

proportional to minimizing the loss against adversarial inputs at test-time), making

this a multi-objective optimization problem.

A natural question that arises is how much importance should we associate with

the two different objectives. If we only train on adversarially perturbed images, we

lose accuracy on test inputs and vice-versa. Hence, a trade-off is necessary. We

can choose to represent this trade-off using a parameter α and change the objective

173



function defined above as follows.

min
n

max
u

α · Ln(x+ u, y) + (1− α) · Ln(x, y) (7.1)

First, we want to highlight that α may often be highly application-specific. For

example, a banking system that uses handwritten digit recognition for identifying

monetary amount on bank cheques should prioritize maximizing accuracy on adver-

sarial examples over an occasional misclassification on the actual test set, whereas,

an image captioning system that is trying to help a visually challenged person under-

stand posts on social media hardly needs to care about adversarial examples. Second,

in the context of an ensemble, as opposed to a single-network n, this trade-off α rep-

resents the probability of the defender’s belief about whether a particular input at

test time is drawn from the adversarially perturbed set (and (1 − α) represents the

probability of it being drawn from the legitimate test set), making this a Bayesian

game. We can now define the utility of the player in this game to act as a stand-in

for the Ln(x+ u, y) and L(x, y) in Equation 7.1.

• The Legitimate User (L) and the defender both get a reward value that repre-

sents the accuracy of the DNN system (a stand in for L(x, y). Thus, for using

a network n in the ensemble N with classification accuracy (say) 98% for an

input image both the defender and L get a reward of 98 (see Table 7.1 & 7.2).

• The Adversary (A) and the defender play a constant(= 100) sum game, where

the former’s reward value for an attack a against the network n is given by

en,a, which is the fooling rate and the defender’s reward is the accuracy of n on

perturbed inputs, which is (100−en,a) (see Table 7.1; a stand-in for Ln(x+u, y)).
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7.3 Inferring MTDeep’s Movement Strategy

Similar to the MTDs discussed, here the defender D deploys a system upfront;

thus, the adversary A can perform reconnaissance before attacking it. This imparts

the leader-follower paradigm to our formulated Bayesian Game. Hence we seek to

find a mixed strategy for the defender. In terms of the optimization problem defined

for the single-network setting in the last section, the objective becomes the following

for the ensemble (considering a single attack action u for the attacker).

min
x

max
u

α · xnLn(x+ u, y) + (1− α)xn · Ln(x, y) (7.2)

where x denotes the mixed strategy for the defender and thus, xn represents the

probability with which they choose the network n ∈ N for classification. Given that

we consider the accuracy values, that are inversely proportional to the loss values in

Equation 7.2, the defender seeks to maximize this objective. With the consideration

of multiple attacks for the adversary and the inherent leader-follower paradigm, this

optimization boils down to finding the Stackelberg Equilibrium of the game. Let us

denote the strategy vector for the defender as ~x and their reward as RDn,a when the

defender uses the network n and user selects the action a. Similarly, the strategy

vectors for the adversary and the legitimate user types are ~qA and ~qL and their

rewards are RAn,a and RLn,a respectively. We seek to maximize the defender’s reward

while allowing the attacker to choose the most effective attack. Specifically, we solve

the following optimization problem –

max
x,q

∑

n∈N

(α ·
∑

u∈U

RDn,a xnq
A
u + (1− α) ·RDn,a xnqLu )

s.t.
∑

n∈N

xn = 1
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∑

u∈U

qYu = 1 ∀ Y ∈ {A,L}

0 ≤ xn ≤ 1 ∀ n ∈ AD

qYu ∈ {0, 1} ∀ Y ∈ {A,L}

0 ≤ vY −
∑

n∈N

RYn,axn ≤ (1− qYa )M ∀ u ∈ UY , ∀ Y ∈ {A,L}

where α is the probability of A attacking an MTDeep system and M is a large

positive number. The objective function maximizes the defender’s expected reward

over its own switching strategy ~x and the strategy vector played by the two user types

(~qA, ~qL) weighted by their relative importance α, which is the probability with which

the defender expects the attacker type A attacks their system.

Thus, this MIQP, implemented in Gurobi, takes as input (1) the reward values

RD, RA, and RL obtained from accuracy metrics of the constituent networks, (2)

α, the probability of the player types and outputs the optimal strategy for both

the defender (~x) and the users. The first four constraints ensure that the strategy

vectors sum up to one since they represent the probability of selecting actions. The

fifth constraint represents the dual of the attacker’s optimization problem which tries

to maximize their expected reward vY over the defender’s strategy. This constraint

captures the fact that the attacker knows ~x and uses it to select its attack strategy ~qA.

Note that the second constraint forces the users L and A to select a pure strategy. As

the authors in [103] show, this constraint is not limiting for the attacker because for

the attacker A, there always exists a pure strategy in support of any mixed strategy

it can play. For the attack the attacker selects, the right side of the fifth constraint

becomes 0 making vY =
∑

n∈N R
Y
n,a. Lastly, the defender’s strategy, in the worst case,

can be a pure strategy that directs MTDeep to use a single network for classification.
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7.4 Experimental Results

We first compare the effectiveness of MTDeep for MNIST, Fashion-MNIST, and

the ImageNet datasets when it is used as a standalone defense mechanism. We then

show that MTDeep when piggybacked onto an existing defense mechanism like En-

semble Adversarial Training, can result in boosting the accuracy against adversarial

attacks. We then analyze the effect of black-box attacks designed using a distilled

network that can capture a holistic view of an ensemble like MTDeep which leverages

randomization at test time. We show that given the limitation on the number of

samples in the MNIST dataset, black box attacks are less effective than white-box

attacks. We finally introduce the notion of differential immunity and show that this

metric can capture the informal notion of transferability of attacks. We discuss how

this measure can give us an understanding of how effective MTDeep will be. Finally,

we talk about the effects of setting an incorrect α (that a user needs to input) when

calculating the switching strategy for MTDeep.

7.4.1 MTDeep as a Standalone Defense Technique

We compare the effectiveness of MTDeep with two baselines. The first one mea-

sures the accuracy of each individual network in the ensemble and the second one

is a randomized ensemble that uses Uniform Random Strategy (MTD-URS) to pick

one of the constituent networks with equal probability. In contrast, MTDeep uses the

Stackelberg equilibrium strategy of the defender to pick a constituent DNN at ran-

dom. We do not showcase comparison against deterministic (such as majority-voting

or weighted) ensembles because, as discussed in the related work section (Sec. 7.1),

these voting functions are equivalent to a final layer of a large network with multi-

ple sub-components built using CNN, RNN and MLP building blocks. Nonetheless,
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(a) MNIST (b) Fashion-MNIST

Figure 7.2: Accuracy of MTDeep with non-adversarially trained networks against (1)

each of the constituent networks and (2) a uniform random strategy for randomly

selecting a constituent network at test time. The gray line at the 10% mark denotes

the accuracy of randmonly guessing a class given an input image.

to drive the point home, under the heading of differential immunity, we empirically

demonstrate that majority voting ensembles obtain a lower accuracy on adversarial

examples when compared to MTDeep (and even MTD-URS) for MNIST.

MNIST and Fashion-MNIST

For each of the data sets, we trained three classification networks that, as stated

before, were built using either Convolution layers (CNN), Multi-layer Perceptrons

(MLP), or Hierarchical Recurrent layers (HRNN). The size of the train and test sets

were 50000 and 10000 respectively.

We considered three attack methods for the attacker– the Fast Gradient-Based

(FGM) attack (with ε = 0.3), the DeepFool (DF) attack (with three classes being
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considered at each step when searching for an attack perturbation), and the Projected

Gradient Descent (PGD) attack (with ε : 0.3, ε− iter : 0.05). We develop adversarial

examples for each test image based on either the loss gradient (for FGM and PGD)

or the classification boundary in the feature space (for DF) corresponding to each

individual network in the ensemble. For example, the adversarial examples generated

using the PGD algorithm on the loss information of the CNN is termed as PGDc

in Table 7.1. We then find the classification accuracy of each network on these

adversarial examples to compute the utility values shown in the table. Note that an

adversarial example developed using information about one network may not be as

effective for the other networks. We find that this is especially true for attacks like

DF that exploit information about a particular network’s classification boundary (eg.

DFm reduces the classification accuracy of MLP to 2% but is hardly effective against

the other two networks. Both of these are able to classify the adversarial examples

correctly more than 95% of the time). On the other hand, attacks that exploit the

gradient signals of a particular network are somewhat effective against the other

networks, i.e. have high transferability (eg. FGMm reduces the accuracy of MLP to

3.1% and the accuracy of HRNN and CNN to ≈ 25% and ≈ 55% respectively). We

observe this trend for both the MNIST and the Fashion-MNIST dataset.

In Figure 7.2, we plot the accuracy of a particular classification system (the objec-

tive function value), when using MTDeep vs. any of the single constituent networks

and MTD-URS as α varies from 0 to 1. When α = 0 and the defender ignores the

possibility of playing against an adversary, and thus, the mixed strategy for MTDeep

boils down to a pure strategy for selecting the most accurate classifier. In our experi-

ments, MTDeep chooses the MLP for every input test-image for the MNIST data-set

and the CNN for classifying inputs drawn from Fashion-MNIST. In contrast, MTD-

URS has lower classification accuracy than MTDeep because it also uses the two less
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Figure 7.3: MTDeep’s classifier selection strategy.

accurate classifiers equal amounts of time. Given that classification accuracy for each

of the constituent networks are relatively high, the difference is hard to notice in the

graph.

When α = 1 and the defender cares about accuracy on only adversarial examples,

strong attacks like PGD for a particular network can fool it 100% of the time for

MNIST data classification and at least 97% for Fashion-MNIST. In contrast to using

individual networks, a randomized selection of networks at classification time perform

much better because an adversarial perturbation developed based on information from

one network fails to fool other networks that may be selected at classification time.

MTDeep achieves a classification accuracy of 24% for MNIST and 25% for Fashion-

MNIST while MTD-URS has a classification accuracy of ≈ 20% for both the data

sets. The difference in classification accuracy is mainly because MTD-URS picks

more vulnerable networks with equal probability. The mixed strategies for MTDeep

are show in Figure 7.3.

Note that in the case of Fashion-MNIST, MLP has a very low probability of being

played (≈ 0.001%) and the classification system is found to be the most secure when
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utilizing a subset of two consequent networks (i.e. CNN and HRNN). On the other

hand, for the classification of MNIST data, the MLP has a higher probability of being

played at equilibrium than the CNN-based classifier. HRNN is given equal weight as

CNN for Fashion-MNIST but clearly dominates in the case of MNIST.

ImageNET

We use six different networks which have excelled on ILSVRC-2012’s validation set

[190] to construct the ensemble for MTDeep (see Table 7.2). Since attacks like FGM,

DF, and PGD on these large networks have are time intensive because they need

to be calculated for every single test image, we assume the adversary uses Universal

Perturbations (UP) developed for each network in [172], which (1) is built on top of

DF and (2) have to be generated only once. These UPs were generated by ensuring

that the L∞ norm of the perturbations was less than a bound ξ = 10. The actions of

the players and their utilities are shown in Table 7.2.

Researchers have shown that defense mechanisms like adversarial training are

ineffective against this type of attack [172]. Moreover, state-of-the-art defense mech-

anisms (c.f. discussion in related work), is still ineffective against this attack. In

such cases, MTDeep is a particularly attractive approach because it can increase the

robustness of the classification system even when all other defense mechanisms are

ineffective.

In Figure 7.4, we plot the expected accuracy for the MTDeep along with the objec-

tive values of each of the constituent networks when the probability of an adversary

type α varies. Given there are six constituent networks in the ensemble, to avoid

clutter, we don’t plot MTD-URS for brevity but observe that it always has ≈ 4% less

accuracy than MTDeep, which is a relatively high drop in accuracy given the Ima-
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Figure 7.4: We compare the expected accuracy of MTDeep against the accuracy of

the individual constituent networks for the ImageNET dataset.

geNET data-set. When α = 0, MTDeep uses the most accurate network (ResNet-152)

that maximizes the classification accuracy. As adversarial inputs become more ubiq-

uitous and thus α moves towards 1, the accuracy against the perturbed inputs drops

for all the constituent networks of the ensemble. Thus, to stay protected, MTDeep

switches to a mixed policy that utilizes more networks.

When the system receives only adversarial samples, i.e. α = 1, the accuracy of

MTDeep is 42% compared to 20% for the best of the single DNN architectures. The

optimal strategy in this case is ~x = (0, 0.171, 0.241, 0, 0.401, 0.187) which discards

some of the configurations (V GG-F and V GG-16 in this case). The 22% accuracy

bump for modified images comes despite (i) high misclassification rates of constituent

networks against Universal Perturbations, and (ii) lack of proven defense mechanisms

against such attacks.
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Legitimate User (L)

MTDeep Classification Image

MLPeat 97.99

CNNeat 98.97

HRNNeat 97.22

Adversarial User (A)

FGMm FGMc FGMh DFm DFc DFh PGDm PGDc PGDh

95.06 75.32 70.1 1.5 96.97 95.73 0.00 88.00 69.00

61.44 96.55 68.58 98.36 0.79 96.09 72.00 20.00 81.00

81.24 84.79 93.1 96.85 95.9 4.41 82.00 71.00 10.00

Table 7.3: The utilities for the players when the adversary attacks the classifiers

already hardened using Ensemble Adversarial Training (EAT) with FGM attacks.

Remark. Let us denote accuracy on legitimate samples as aL and accuracy on

adversarial samples as aA. Note that the objective function (O), becomes the equation

of a line when aL and aA are constants because O = (aA − aL) ∗ α + aL. Since the

values of aL and aA are constant for each constituent network, the expected accuracy

(= O) results in a straight line with slope (aA − aL) and intercept aL. Also, as the

accuracy on the legitimate samples is more than accuracy on the adversarial inputs,

i.e. aL > aA, the slope is negative. For the MTDeep system (and also MTD-URS),

the change in the accuracy values aA and aL is small (2 − 4% relative to the 100%

scale of Y-axis) as α varies from 0 to 1. Thus, the plots although non-linear, at times

appear to be linear.

7.4.2 MTDeep as an Add-on Defense-in-depth solution

We study the use of MTDeep on top of a state-of-the-art defense mechanism

called Ensemble Adversarial Training (EAT) [166]. EAT is an improvement on top

of the adversarial training procedure in which (1) an attack algorithm is chosen, (2)

perturbed images are generated using it for a particular network and (3) the generated

data is used (with their correct labels) to fine-tune the weights of the trained network

that needs to be made more robust. Although this helps to robustify the network

to an extent, higher gains in accuracy against adversarial examples can be gained

by incorporating more perturbed examples in the new test set, especially the ones
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Figure 7.5: Expected accuracy of MTDeep with adversarially trained networks.

that are generated by attacking other networks (i.e. use all, not only the one whose

parameters will be fine-tuned). As more than one network is required in this defense

procedure, the authors call this as Ensemble Adversarial Training even though the end

product of this procedure is a single network more robust to adversarial attacks. Note

that MTDeep renders itself naturally to this robustification method and also, with

high probability, uses all the robust constituent networks in the ensemble at test time.

Unfortunately, using EAT can only make the networks robust against attack im-

ages generated by the particular attack algorithm used for fine-tuning and may still

be vulnerable to stronger (i.e. more computationally intensive) attacks. In Table 7.3,

we show that the utility values obtained using the three constituent networks whose

parameters are fine-tuned using EAT (which, in turn, uses the FGM attack to gen-

erate training samples on top of the MNIST test set). Note that although there is

a boost in overall accuracy against adversarial examples generated using FGM, the

other attacks (1) DF, which is generated in a very different manner compared to
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FGM, and (2) PDG, which represents a stronger class of attacks, are both still able

to cripple the individual constituent networks. Surprisingly, even for these attacks,

the EAT procedure increases the accuracy of attacks that are misaligned. For exam-

ple, an attack PGDH generated using the model parameters of the HRNNeat brings

down the accuracy of the HRNNeat network to 9% whereas, it is found to be pretty

ineffective against the CNNeat (≈ 81%) and the MLPeat (≈ 72%). As to why EAT

helps is reducing the transferability of these attacks could be interesting future work.

In the present context, this phenomenon helps MTDeep used in conjunction with the

EAT method to obtain impressive accuracy gains against attack images.

We highlight the results of our experiments with the fine-tuned networks on the

MNIST dataset in Figure 7.5. When α = 1, i.e. the worst case for the defender and

it only gets adversarially perturbed images as inputs, the accuracy of the constituent

networks is 0 − 4% because the EAT training is using the FGM attack is ineffective

against DF and PGD attacks for a particular network. On the other hand, MTDeep

achieves an accuracy of ≈ 55% against adversarially perturbed images because of the

reduced effectiveness in terms of the transferability of the attack images. Thus, we

see a gain of more than 50% when classifying only adversarially perturbed images.

7.4.3 Blackbox Attacks on MTDeep

MTDeep designs a strategy based on a set of known attacks. Once deployed, an

attacker can train a substitute network via distillation, i.e. use MTDeep as an oracle

to obtain labels for the (chosen-ciphertext like) training set for the substitute network.

Given that the distilled network captures information relating to the randomization at

test time, we wanted to see how effective such a distillation procedure is in generating

an expected network that mimics MTDeep. More specifically, if adversarial samples
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generated on this distilled network [164] successfully transfer against the MTDeep

ensemble.

For this purpose, we used the non-adversarially trained networks for classifying

MNIST data and consider the worst-case scenario where all inputs at the test time are

adversarially modified, i.e. α = 1. Note that a distilled network needs to capture both

(1) the behavior of the ensemble and (2) the built-in randomization (expected clas-

sification boundary) of the MTDeep ensemble with limited training samples (50000,

which is equal to the size of the training set for the constituent networks) in order to

be effective. We notice that MTDeep has higher immunity to black-box attacks and

is able to classify attack inputs ≈ 32% of the time compared to the ≈ 24% accuracy

against white-box attacks, as discussed in the previous sub-section. Thus, there exists

a white-box attack in the attacker’s arsenal that is stronger than the black-box attack

we generated, thereby not affecting the defender’s optimal mixed strategy.

Note that even if a black-box attack proved to be a more effective attack against

the ensemble (which it may be for some other domain or vision dataset), this attack

is not modeled by the defender in the original game. The defender with knowledge

of such black-box attacks can do two actions– (1) incorporate the black-box attack

as one of the attacker’s actions which in turn, might change the mixed strategy

for random selection of constituent networks and (2) train the individual networks

against adversarial images generated by this attack. Both of these can, in turn, lead

the attacker to come up with new black-box attacks against the improved ensemble.

As to how and when, if at all, this procedure leads to a stable point is another

interesting future research direction.
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Networks
Differential

Immunity (δ)

Accuracy of Best

Constituent Net

Accuracy of

MTDeep
Gain

FashionMNIST 0.11 3% 24.8% 21.8%

MNIST 0.19 0% 23.68% 23.68%

ImageNET 0.34 22.2% 42.88% 20.68%

MNIST + EAT 0.78 4.41% 54.71% 50.3%

Table 7.4: Differential Immunity of the various ensembles and the gains seen in

accuracy compared to the best constituent networks when α = 1.

7.4.4 Differential Immunity

Clearly, when an attack u ∈ U is able to cripple all the networks n ∈ N , using

MTDeep will provide no gains in robustness. In this section, we try to quantify the

gains MTDeep can provide. Let E : N × AA → [0, 100] denote this fooling rate

function where E(n, a) is the fooling rate when an attack a is used against a network

n. Differential immunity of an ensemble U against a set of known attacks E against

it δ can measured with just the fooling rate values as follows,

δ(U,N) = min
u

maxnE(n, a)−minnE(n, a) + 1

maxnE(n, a) + 1

If the maximum and minimum fooling rates of a on a N differ by a wide mar-

gin, then the differential immunity of MTDeep is higher. This is represented in the

numerator. The denominator ensures that an attack that has a high fooling rate

reduces the differential immunity of a system compared to a low impact attack even

when the numerator is the same. The +1 factor in the denominator of the function

prevents division by zero while the +1 in the numerator ensures that higher values of

maxnE(n, a) reduce the δ when maxnE(n, a) = minnE(n, a). Note that δ ∈ [0, 1].
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As per this measure, the differential immunity of the various ensembles used in our

experiments is highlighted in Table 7.4.

As per our expectation, we observe a general trend that the differential immunity

of an ensemble is in proportional to the accuracy gains obtained by MTdeep when

compared to the most secure constituent network in the ensemble. Although we

notice the lowest gain in case of ImageNET, note that this 20.68% is a substantially

better absolute gain in accuracy than the ≈ 22% or the ≈ 24% gain in accuracy for

the Fashion-MNIST and the MNIST datasets with non-adversarially trained DNNs

because the number of classes in ImageNET is 1000 compared to 10 for the latter

two datasets. A random class selector with zero understanding of the input (provided

there is no class imbalance among the adversarial inputs) can achieve ≈ 10% accuracy

for MNIST and Fashion-MNIST whereas it can only obtain an accuracy of ≈ 0.001%

for the ImageNET data-set.

Note that existing measures of robustness are mostly designed for a single DNN

[181, 182] and thus, do not try to incorporate the notion of transferability, i.e. to

what extent is an attack designed for one network can affect another. Thus, they

cannot be used to correctly measure the robustness of an ensemble. We propose

differential immunity as one of the metrics for evaluating ensembles that use any

form of randomization at test time. It can be used to capture the transferability of an

adversarial attack and thus, provide a reasonable measure of robustness for ensembles.

Disagreement Metrics In Fig. 7.5, we highlight the number of perturbed test

images (total 10000) on which 0, 1, 2 or 3 constituent DNN’s classification output(s)

agree with the correct class label. We conducted these experiments using the non-

adversarially trained networks for MNIST classification and for brevity purposes, we
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Attacks 0 1 2 3

FGMC 4788 3641 1449 118

FGMH 389 2728 6667 212

FGMM 1513 5790 2479 214

FGMBB 2305 2569 2678 2444

Table 7.5: Agreement among constituent networks when classifying perturbed inputs

for the MNIST data-set.

only use the FGM attack method. Note that the FGMC is the strongest attack that

can make all the n ∈ N misclassify at least 70% of the images. As generating δ

can be costly at times, which needs the fooling rates for each pair (n, a), one can

generate the agreement metrics on a small data set to provide upper bounds for

δ. This provides an idea as to how using an MTDeep ensemble can increase the

robustness against adversarial samples. In this case, δMNIST ≤ 0.51 because for the

strongest attack, every network in the ensemble will misclassify (approx.) 49% of

the time. Also, note that a majority based ensemble is only able to guarantee an

accuracy of ≈ 14% against the FSMC attack because, in all the other cases, only 0

or 1 network is able to correctly predict the correct class. In comparison, MTDeep

when facing an attacker who only uses FGM attacks obtains an accuracy of 26.8%

against adversarially perturbed inputs.

Towards Differentially Immune Networks. Previously, authors in [6] have

shown that constructing an ensemble with a high δ is difficult. The authors show

that ideas like partitioning the training data into disjoint sets that are then used to

train different networks (∈ AD) do not make the networks differentially immune. This
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Figure 7.6: Analyzing the participation of the different constituent networks (trained

on ImageNET) at equilibrium in MTDeep for different values of α.

concept of an attack’s potency across networks it was not specifically targeted for is

defined as transferability of an attack [6] and, although informally used, is similar

to our notion of differential immunity. Fortunately, recent works highlight promising

avenues that can be used to limit the transferability of attacks [180]. If an ensemble of

such networks can be developed, as we saw in the case of DNNs for MNIST fine-tuned

with EAT, MTDeep can provide significant gains as a defense technique (further dis-

cussion on this topic ensues in Appendix C). In scenarios where generating ensembles

with high differential immunity is still difficult, MTDeep can still boost the accuracy

of classifiers (in conjunction or without other state-of-the-art defense mechanisms).

7.4.5 Participation of Individual Networks.

In Figure 7.6, we explore the participation of individual networks in the mixed

strategy equilibrium for MTDeep used to classify ImageNET data. The results clearly
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Figure 7.7: Loss in accuracy (percentage points) when the real-world α is different

from the α MTDeep uses for modeling.

show that while it is useful to have multiple networks providing differential immunity

(as testified by the improvement of accuracy in adversarial conditions), the leveling-

off of the objective function values with more DNNs in the mix does underline that

there is much room for research in actively developing DNNs that can provide greater

differential immunity. Note that no more than four (out of the six) networks partici-

pate in the equilibrium. An ensemble of networks with higher differential immunity

equipped with MTD can thus provide significant gains in both security and accuracy.

7.4.6 Robustness against Miscalibrated α

So far in our discussion, we have assumed that α (the attacker’s probability)

is calibrated correctly when coming up with a randomization strategy. Similar to

our discussion on the robustness of the strategy found to attacker probabilities in

Chapter 3, the value of α may be incorrect and the computed strategy, in turn,

191



ends up being sub-optimal. In Figure 7.7, we plot the deviation of the chosen policy

(based on the assumed α) from the optimal as the real α is varied ±50% from the

one assumed. The BSG-framework remains quite robust (as opposed to a uniform

random strategy) i.e. the accuracy is within 0 − 3% of the optimal accuracy. The

robustness to α further highlights the usefulness of MTDeep as a meta-defense meant

to work not only against adversarial attacks but also in the context of a deployed

classifier that will have to deal with adversaries as well as legitimate users.

7.5 Concluding Remarks

In this chapter, we introduced MTDeep – a framework inspired by Moving Tar-

get Defense in cybersecurity (a ‘security-as-a-service’)– to help boost the security of

existing classification systems based on Deep Neural Networks (DNNs). We mod-

eled the interaction between MTDeep and the users as a Bayesian Stackelberg Game,

whose equilibrium gives the optimal solution to the multi-objective problem of re-

ducing the misclassification rates on adversarially modified images while maintaining

high classification accuracy on the non-perturbed images. We empirically showed

the effectiveness of an MTDeep ensemble of classifiers against various attacks on the

MNIST, the Fashion-MNIST, and the ImageNet data-sets. When MTDeep is used

along-side existing defense mechanisms for DNNs, it increases the gain in robustness.

Finally, we discussed the property of differential immunity and highlighted its relation

to the accuracy gains that can be obtained by using MTDeep; it makes the need for

developing ensembles with higher differential immunity a promising future direction.
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Chapter 8

MOVING TARGET DEFENSE FOR ROBUST SENSOR ACTIVATION IN

POWER NETWORKS

Table of Contents � 1 � 2 � 3 � 4 � 5 � 6 � 7 � 8 � 9

C Detection Surface Shifting of Differentially Immune Sensor

Placement Strategies in Power Networks

t Constant Period switching

M Stackelberg Strategy of a Normal-form Game

The electric power grid forms the backbone of all the other critical infrastructures

(communication, transportation, water distribution, etc) of a country, and thus, ne-

cessitates the presence of adequate monitoring strategies to quickly detect any anoma-

lous behavior(s) that may have manifested in the system. It is of utmost importance

to not only detect such anomalous behavior but also to take appropriate actions

quickly to prevent the failures of power grid components which in turn, may lead to a

large scale blackout [191]. Components such as High Voltage Transformers (HVTs),

generating stations, substations, etc. are essential to the power grid and thus, their

operational behaviors are monitored at all times with the help of Phasor Measure-

ment Units (PMUs are devices, which are utilized as sensors, for monitoring the power

grid). The problem of placing these sensors has been studied by multiple researchers

over the past decade [192, 193]. Recently, in [194, 195], the authors proposed a sensor
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placement approach that can uniquely identify the source of the anomaly by utiliz-

ing the sensor readings generated by PMUs. With the discovery of novel real-world

attacks such as Stuxnet [196], Dragonfly [197] and an array of existing cyberattack

such as jamming, Denial of Service, packet dropping, false-data injection and compro-

mise of data integrity [198, 199], robustness of existing sensor placement mechanisms

becomes critical. Thus, in this chapter, we seek to leverage the idea of Moving Tar-

get Defense (MTD) and Minimum Discriminating Code Sets (MDCS) in designing a

defense-in-depth solution to PMU placement in adversarial environments.

We continuously move the detection surface to make it challenging for an adver-

sary to impede the unique identification of failure signals of HVTs. While PMUs

are difficult to move, as opposed to the movement of physical resources in security

games [103], once placed, they can be efficiently activated and deactivated, similar to

the dynamic movement of Intrusion Detection Systems (IDS) discussed in Chapter 4.

While one may choose to activate all the PMUs placed upfront, the cost of maintain-

ing them can become an impediment. Hence, the periodic use of a smaller subset

(which ensures unique identification) of the sensors placed upfront can be considered.

Further, all works in MTD have relied solely on heuristic guidance when constructing

the configuration set; this can, as discussed in Chapter 7, result in scenarios where

one attack cripples all defenses. The goal of this chapter is thus to construct a config-

uration set C, which has the desirable property of differential immunity introduced

in Chapter 7. We then model the attack-defense interaction as a game and infer the

optimal movement strategy M .

Specifically, we first define a novel variant of the MDCS problem, called the

K−differentially Immune MDCS (hereafter called K-δMDCS). A solution to this

problem is a set of K MDCSs of a graph, i.e. each of the K solutions uniquely iden-
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tify failing HVTs, with the added constraint that no two MDCSs share a common

vertex. We will show that K MDCS form a differentially immune configuration set

for the MTD. Given that the original MDCS problem is NP-Complete, we show that

K-δMDCS is also NP-Complete and provide an optimal Quadratically Constrained

Integer Linear Programming (QC-ILP) approach to find the Kmax-MDCS of a graph.

While our approach proves to be scalable for even the large power networks, we also

propose a greedy approach that is computationally faster but trades-off on finding the

maximum value of K. Second, we model the interaction between the power utility

company (hereafter, the defender) and the adversary, as a normal-form game. Similar

to our work described in the previous chapter, the Strong Stackelberg Equilibirum

characterizes an optimal sensor activation strategy for the defender. Finally, we show

the efficacy of our strategy and the scalability of our proposed approach on several

IEEE power test cases with varying sizes.

8.1 Preliminaries

In this section, we first describe an electric power grid scenario and highlight how it

can be modeled as a graph. Then, we describe the MDCS problem, showcasing how so-

lutions to it can help determine sensor placement for unique monitoring of HVTs. Fi-

nally, we re-state the notion of differential immunity presented in the previous chapter.

The Electric Power Grid as a Graph

In Figure 8.1, we show the IEEE 14 Bus single line diagram of an electrical power

grid. In [194], the authors proposed a set of graph construction rules that model the

monitoring of HVTs as a bipartite graph G = (T ∪ S,E), where T represents the

set of High Voltage Transformers (HVTs) that need to be uniquely monitored and
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Figure 8.1: IEEE 14 Bus Single Line Diagram

S represents the locations where the PMUs (or sensors) can be potentially placed

(PMU’s cannot be directly placed on HVTs), and E represents the set of edges that

exist if the operational behavior signal of an HVT (t ∈ T ) reaches a PMU (s ∈ S)

within a pre-specified number of hops. As Signal-to-Noise ratio (SNR) is used to

measure the operational signal of an HVT in the real-world, and SNRs are known to

quickly deteriorate over multiple hops, we, similar to prior works [194, 195], consider

an edge (∈ E) to be at most 2 hops (see Figure 8.2).

Minimum Discriminating Code Set (MDCS)

The MDCS problem is a special case of the Minimum Identifying Code Set

(MICS) [200], and was first studied in [201]. Given a graph, the goal of MICS is

to identify the smallest set of nodes on which sensors can be placed such that two

properties are met (given domain-specific information propagation constraints). First,

if an event occurs in an entity represented by a node in the graph, a unique set of

sensors is activated leading to easy identification of the node (entity). Second, all
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t1 t2 t3 t4 t5V1/T =

V2/S =

Figure 8.2: Bipartite Graph derived from the IEEE 14-bus network with 2-hop infor-

mation propagation constraints.

nodes should trigger a non-empty set of sensors if an event occurs. In MDCS, the

problem is adapted to a bipartite graph scenario with two (disjoint) sets of nodes– (i)

nodes of interest where an event may occur; these nodes have to be uniquely identified

with the sensors, and (ii) nodes on which sensors can be placed. Formally, we can

define the MDCS problem in the context of sensor placement in power grid systems

as follows [194].

Definition 1. Given a Bipartite Graph, G = (T ∪ S,E), a vertex set S ′ ⊆ S is

defined to be the Discriminating Code Set of G, if ∀t ∈ T,N(t) ∩ S ′ is unique, where

N(t) denotes the neighborhood of t. The Minimum Discriminating Code Set (MDCS)

problem is to find the Discriminating Code Set of minimum size.

Figure 8.2 represents the bipartite graph obtained from Figure 8.1, with 5 nodes

in T , representing the 5 HVTs, and 40 nodes in S. An MDCS solution S ′ ⊆ S of

this graph consists of three nodes (indicated by the three colored nodes) which ensure

that they provide a unique code to identify each of the 5 nodes in T (colors above

the nodes of T indicate the unique combination of sensors activated).

197



8.2 K Differentially Immune MDCS (K-δMDCS)

Differential Immunity

Note that when a single attack can cripple all the defense configurations ∈ C, MTD

cannot aid in improving the robustness. In Chapter 7, we introduced the notion

of differential immunity that aims at measuring the amount of diversity between

configurations ∈ C. In this work, we seek to design a configuration set C that is

differentially immune, i.e δ = 1. Each attack, allowed by the threat model defined

later, can only cripple one defense configuration. This ensures maximum diversity of

C and implies the highest robustness gains for the formulated MTD.

To design such a C for our MTD system, we first need to find multiple MDCS

sets of a bipartite graph. For this purpose, we desire K differentially immune MDCS,

abbreviated as K-δMDCS, where no two MDCS solutions share a common sensor

placement point.

Definition 2. (K-δMDCS) Given a Bipartite Graph, G = (T ∪S,E), K vertex sets

Si ⊆ S, i ∈ {1, . . . , K} are defined to be K-δMDCS of G, if the following conditions

hold– (1) all the sets Si are MDCSs of graph G and (2) for all possible pairs of sets

(Si, Sj), Si ∩ Sj = ∅.

First, we want to activate the minimum number of sensors placed in the network

at any point in time. Hence, we use K sets, all of which are MDCS, i.e. have the

smallest cardinality. Second, the use of differentially immune MDCS tries to optimize

for robustness in adversarial settings. If an attacker were to attack a particular sensor

placement point s ∈ S, it can hope to, at best, cripple a single MDCS Si ∈ C from

uniquely fingerprinting HVT failure. If the defender selects an different MDCS, i.e.

Sj ∈ C (j 6= i), then the attacker will not succeed in effecting the functionality of
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Figure 8.3: The IEEE 14-bus power grid graph has 4− δMCDS solutions.

the power grid sensors. We will now show that the decision problem corresponding

to K-δMDCS is NP-complete.

Lemma 8.2.1. K-δMDCS is NP-Complete, given K is an integer and K > 0.

Proof. We note that the original MDCS problem, which is known to be NP-

Complete [201], is simply a special case (when K = 1).

Corollary 8.2.1.1. K-δ Graph Problems such as K-δMinimum Identifying Code Set

(MICS), K-δMinimum Set Cover (MSC), K-δMinimum Vertex Cover (MVC) are

NP-Complete when K is an integer and K > 0. 1

Let us denote the size of an MDCS for a bipartite graph G as m. In K-δMDCS,

the goal of the defender is to find K MDCSs each of size m. Then, the defender

needs to place K ∗ m sensors in the power grid and, at any point in time, activate

an MDCS set (of size m) to uniquely identify failures in T . While a large number of

defender strategies (i.e. larger values of K) helps to increase their options for sensor

activation in turn reducing the success rate for the attacker, it also incurs the cost

1Note that in the context of these problems, the distinction between the node sets T and S in
MDCS are unnecessary and one can view the graphs as G = (V,E).
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of placing K ∗m sensors. Thus, the ideal choice of K should trade-off robustness vs.

sensor costs (when K = 1, robustness using MTD is impossible to achieve).

In cases where the defender has sufficient resources, one might ask what is the

maximum size of K? Depending on the structure of the underlying graph, this

question may have a trivial answer. For example, if the bipartite graph has a t ∈ T

and only a single s ∈ S in its neighbourhood N(t) = {s}, any MDCS of G needs to

place a sensor on s to detect a fault in t. Hence, there cannot exist two MDCSs that

do not share a common node because s has to be a part of both. In such cases, the

max value of K, denoted as Kmax, is 1. Beyond these special cases, similar to the

problem of finding the maximum value of K in the K-clique problem, finding Kmax

demands a search procedure over the search space of K that we now describe.

Finding Kmax-δMDCS

We first propose a Quadratically Constrained Integer Linear Program (QCILP)

that given a value of K, finds K Discriminating Code Sets (DCSs). We then showcase

the algorithm for searching over possible values of k ∈ {1, . . . , |S|} to find the largest

K. To define the QCILP for G = (T ∪S,E), we first consider |S| ∗ k binary variables

where zsk = 1 if a sensor is placed in node s ∈ S for the kth DSC and 0 otherwise. We

also use a variable l that denotes the size of the DCSs found. We can now describe

our QCILP as follows.

min
l,z

l (8.1)

s.t. l =
∑

s

zsk ∀k All k DCS has the same size l.

∑

s∈S

(zsk − zsk′)2 = 2l ∀(k, k′) No two DCSs should have a common sensor.

∑

s∈N(t)

zsk ≥ 1 ∀t,∀k All t ∈ T has a sensor monitoring them for all the k solutions.
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∑

s∈N(t)∆N(t′)

zsk ≥ 1 ∀(t, t′), ∀k t and t′ trigger unique sensors for the k-th DCS.

zsk ∈ 0, 1∀s, ∀k

The last two constraints ensure that each of the K solutions is a Discrimination Code

Set where (1) all t ∈ T trigger at least one sensor s ∈ S and (2) for all pairs of t and t′

(both ∈ T ), there exists at least one sensor in the symmetric difference set of t and t′

that is a part of the DCS, which in turn uniquely distinguishes between t and t′. The

first two constraints ensure that all k DCSs are of equal size and no two DCSs shares

a common sensor. We can now ask the question as to whether the DCSs found by

Equation 8.1 is indeed the Minimum DCSs (MDCSs) for the graph G. In this regard,

we now show the following.

Theorem 8.2.2. For all values K ≤ Kmax, the optimization problem in Equation 8.1

returns K-δMDCS.

Proof. We consider proof by contradiction. Given the value of K(≤ Kmax), let us

assume that the solution returned by Equation 8.1 is not the K-δMDCS for the graph

G. If this is the case, at least one of the two properties in the definition K-δMDCS

is violated. Thus, either (1) the returned solution consists of DCS that is not the

Minimum DCS, or (2) there exists a sub-set (of size greater than one) among the set

of DCSs that share a common node.

Owing to the third and fourth constraints, all the solutions constitute a DCS.

Now, if (1) is violated, all the DCSs returned by the QCILP, of length l, are not

the MDCS for G. Thus, the MDCS must have a DCS of size l′ ≤ l. Given that

the minimization objective finds the smallest DCS and K ≤ Kmax, this cannot be

possible. Hence, (1) does not hold.
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For (2), let us say that there exists a subset of the DCSs returned that share a

common node. If this was the case, then at least one solution pair has to share a

common node. If this node is denoted as s∗ and the two solutions are termed as k

and k′, then for the second constraint, given zs∗k = zs∗k′ = 1, the term for s∗ is zero.

Even if the other l− 1 nodes in the solutions k and k′ are unique, the terms will add

up to 2 ∗ (l − 1) thereby violating the second constraint. This is not possible and as

a consequence, (2) does not hold.

Given this, we can now consider cases where K > Kmax. When K > Kmax, the

optimization problem in Equation 8.1 is either infeasible or returns K DCSs that are

not MDCS for graph G. This condition holds by the definition of Kmax (proof by

contradiction ensues neither of the two cases holds). With these conditions in mind

we can design an iterative approach, shown in Algorithm 5, to find the Kmax−δMDCS

of a given graph.

Figure 8.3 showcase the 4 − δMDCS solutions returned by Algorithm 5 for the

14-bus power grid network. The different colors indicate the different MDCSs found

for G and the shades of the same color indicate an MDCS set. As shown, each of the

four MDCS has a size of l = 3 and uniquely identifies all the transformers T . The

lack of overlapping colors in the bottom set of nodes indicates that no two MDCS

share a common s ∈ S.

While the procedure in Algorithm 5 finds the Kmax − δMDCS, it can be time-

consuming for the largest networks (although it works well on large power-grids as

shown in the experimental section). Thus, one can consider a greedy approach in

which one solves the MDCS problem using using an iterative ILP appraoch proposed

in [194]. In the greedy algorithm, we solve the ILP for finding MDCS with the

additional constraints that zs = 0 for all the sensors found in the previous solution
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Algorithm 5 Finding Kmax − δMDCS.

1: In: G = (T ∪ S,E)

2: Out: Kmax − δMDCS

3: solutions ← ∅

4: K ← 1

5: while doK ≤ |S|

6: solutionsK ← Solve Equation 8.1 with K

7: if solutionsK == ∅ then

8: break Infeasible for K > Kmax

9: end if

10: if solutions ! = ∅ & |solutions(l)| < |solutionsK(l)| then

11: break DCS returned is not MDCS for K > Kmax

12: end if

13: solutions ← solutionsK

14: K ← K + 1

15: end while

16: return solutions

steps and continue doing so until (1) the ILP becomes infeasible or (2) results in

DCS that does not have minimum cardinality. In the experimental section, we will

see that although this approach is faster, it can output K-δMDCS where K < Kmax.

The sub-optimality is a result of the constraint ordering “enforced” on the sensors

that makes the ILP infeasible in the latter iterations.

203



↓ AD | AA → . . .

0,

UD(
(

t‘
t4

)
,
(
t2
t5

)
, t3)− CA(•)

+
∑

t∈T
UD(t),

−CA(•)

+
∑

t∈T
UD(t),

−CA(•)

UD(t3),

UD(
(
t1
t4

)
,
(
t2
t5

)
)− CA(•)

. . .

. . . . . .

. . .

Figure 8.4: Game-matrix for the dynamic sensor activation problem.

8.3 Game Theoretic Formulation

The defender’s goal is to maintain the unique identifying capability of HVTs at

all times. Conversely, the attacker tries to prevent this capability, thereby making it

harder for the defender to uniquely fingerprint impending failure of HVTs. In this

section, we seek to find an optimal movement function M for the sensor activation

MTD to aid the defender to realize its objective. To do so, we consider a strong

threat-model where the attacker A with reconnaissance, is aware of the defender D’s

(probabilistic) sensor activation strategy, thereby making the Stackelberg Equilibrium

an appropriate solution concept for our setting. We use a polynomial-time approach

to find the Strong Stackelberg Equilibrium of the game [62]. We now briefly describe

the various parameters of the formulated game (see Figure 8.4).

Defense Actions The defender has Kmax pure strategies and the configuration set

C = Kmax−δMDCS. If one uses the greedy algorithm instead of the optimal approach

(both described in the previous section), the number of pure strategies obtained may

be less than Kmax.
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Attack Actions We assume that an attacker can spend reconnaissance effort in

figuring out the sensor placement point. Thus, its action set includes attacking a

sensor that may be considered for activation (instead of all the nodes in |S|). While

one can consider attackers with the capability to attack multiple sensor activation

points, it is often too expensive a cost model as it demands resource procurement

and distribution over a wide geographic area.

Player Utilities The game has two different kinds of utilities that are used to

calculate the rewards. First, the defender receives the utility associated with uniquely

identifying a transformer t ∈ T in the case of anomalous spikes indicative of failure

(to occur). We assume that a transformer supplying power to an important building

(eg. the White House or the Pentagon) is considered to be more important than

one supplying power to a residential area. Second, the attacker’s cost for attacking

a particular sensor needs to be considered. While some sensors may be placed in

high-security areas, others may be easier to access. We conduct randomized trails

with both these values ∈ [0, 10], with 10 indicating the HVT/sensor most important

to protect/difficult to attack.

In the bottom right corner of Figure 8.4, the defender, owing to the attacker

attacking a sensor, is only able to uniquely identify t3 and thus, only gets reward

proportional to it. Contrarily, the attacker, due to attacking a sensor, can make

failures of t1 and t2 (and t4 and t5) indistinguishable and receives the corresponding

utilities, minus the cost of attacking the sensor denoted by the light blue node (∈ S,

Figure 8.3). Similarly, if the attacker selects the attack represented by the first attack

column (sensor denoted by the dark brown node), the defender cannot identify any

HVT and thus, gets a utility of zero.
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C Movement Function M

Graph |S|+ |T | |AD|

(K/Kmax)

|AA|

(K/Kmax)

URS

(K)

URS

(Kmax)

SSE

(K)

SSE

(Kmax)

14 Bus 45 4/4 12/12 18.5±4.7 18.65±4.7 20.62±4.6 20.72±4.6

30 Bus 89 4/4 16/16 26.45±5.7 27.25±5.6 29.44±6 29.9±5.8

39 Bus 96 7/9 28/36 18.7±5 19.24±5.2 19.8±5.3 19.73±5.3

57 Bus 170 6/6 60/60 70.76±10.8 70.88±11.1 73.5±10.6 73.07±10.7

89 Bus 422 16/21 96/126 50.67±8.9 51±9 52.2±9.2 52.2±9.2

118 Bus 367 2/2 10/10 31.35 ±6 31.6 ± 6 32.45±6.4 32.61±6.1

2383 Bus 5927 2/3 212/318 832.7±38.7 836.16±36.7 835.34±39 842.34±39.4

Table 8.1: Game parameters and defender’s reward for playing the different Cs and

Ms for the various power-grid networks.

8.4 Experimental Simulations

In this section, we conduct simulation studies on seven IEEE test graphs popular

in the power domain [202]. The total number of nodes (i.e. |S| + |T |) for each

test case is shown in Table 8.1. The table further lists the K values for the K-

δMDCS found by the greedy (denoted by K) and the optimal Algorithm 5 (denoted

by Kmax). The size of the attacker’s pure-strategy set is listed in the fourth column;

this value can be obtained by multiplying the corresponding K value with the size

of an MDCS for graph G as none of the K-δMDCS share a common node. We now

present two results– (1) the effectiveness of the game-theoretic equilibrium compared

to the Uniform Random Strategy baseline (which chooses to activate a particular

MDCS with equal probability) and (2) the solution quality of alongside the time

taken by the greedy and the optimal algorithms.
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Effectiveness of Game-Theoretic Equilibrium

In Table 8.1, we show that in all test cases, the optimal movement strategy at the

Strong Stackelberg Equilibrium (SSE) gives the defender a higher reward than choos-

ing URS. When using URS or SSE, in most cases we see higher gains when the

construction of the MTD configuration set C is optimal (URS(Kmax) obtained from

Algorithm 5) as opposed to using a greedy algorithm (URS(K)). We expected this as

the higher number of differentially immune options (as Kmax > K) chosen with equal

probability reduces the probability of picking the weakest strategy. When the value of

Kmax = K, such as for 14, 30, 57 and 118 buses, we see that the difference between the

two versions of URS (or two versions of SSE) are negligible. The non-zero difference

between the rewards values arises because of the particular MDCS sets chosen even

though the total number of sets chosen are the same. We also see that the difference

in the defender’s utility can be large even when the difference between K and Kmax

is small in the case of larger networks (eg. 2383 bus). Thus, without finding the

Kmax and the SSE for the optimal C, it is hard to the establish the loss in rewards.

Given that these strategies are pre-computed, the power grid utility operator should

not consider the greedy strategy unless the time required by Algorithm 5 becomes

prohibitive, as aspect we will now discuss.

Computational Time for finding C

In Figure 8.5, we compare the time taken for finding the configuration set C using

the optimal vs. the greedy approach. We choose the logarithmic scale for the y-axis

because the computational time of the optimal and greedy approaches for the 14,

30, 39, 57, and 118 buses was less than a second, and thus difficult to distinguish

between on a linear scale. The largest disparity occurs when the size of the optimal
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Figure 8.5: Time taken by the optimal (Algorithm 5) vs. the greedy approach for

findingKmax−δMDCS andK-δMDCS (theK values are shown above the plot points).

set Kmax is greater than the K-sized set found by the greedy approach (39/89/2383

Bus). In other cases, while the optimal approach is slower, it provides the guarantee

that no solution with a greater K exists, which is absent in the greedy case. A case

where the logarithmic scale, from a visualization perspective, does not do justice is

the 2383-Bus. The time taken by the greedy approach is 15s compared to 291s taken

by the optimal approach. While the K value differs by a factor of one, the resultant

gain in defender’s game value, as shown in Table 8.1, is relatively large. Thus, the

added time in generating the optimal configuration set needs to be criticized based

on the gain obtained in the underlying game.

We also consider the pragmatic scenario when the K value is fixed by the defender

up-front owing to budget restrictions of sensors that can be placed in the power

network. In this case, the greedy approach has to iteratively find one solution at

a time, adding them to the constraint set of future iterations until the desired k is
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reached. On the other hand, the iterative procedure in Algorithm 5 can be altogether

ignored and one can simply return the solution found by the optimization problem in

Equation 8.1.

8.5 Related Works

Adversarial attacks on power grids comprise of false-data injection, jamming,

DoS and packet-dropping attacks [203, 204, 198]. While researchers have proposed

a multitude of defense mechanisms [205], including Moving Target Defense (MTDs)

[206, 207], they do not consider the problem of sensor placement to monitor HVTs. On

the other hand, works that leverage the formalism of Discriminating Code Sets [201]

to optimize sensor placement [194], have focused on scalability issues and provided

theoretical bounds in these settings [208]; completely ignore the issue of robustness

to adversarial intent. In this work, we attempted to fill in this gap.

While an array of research work has formally investigated the notion of finding

an optimal movement function M for MTDs, the configuration set C is pre-decided

based on heuristic guidance from security experts [209]. While some works consider

the aspect of differential immunity by analyzing code overlap for cyber systems [22]

or Jacobians of gradients for deep neural networks [180], these measures have no way

of ensuring differential immunity. The notion of k-set diverse solutions in Constraint

Satisfaction Programming (CSP) [210], although conceptually similar to our notion of

differential immunity, does not have the added constraint of finding a minimum sized

solution (as in the case of MDCS). In adversarial scenarios, our work is the first to

formalize the notion of diversity in graphs and propose linear programming methods

to find them.
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8.6 Concluding Remarks

In this chapter, we considered the problem of monitoring the behavior of HVTs

in adversarial settings. We suggested an approach based on MTD and formulated it

as a game between the power utility company (the defender) and an adversary. We

showed that finding a differentially immune configuration set for the defender is NP-

Complete and presented two algorithms– an optimal QC-ILP and a greedy iterative-

ILP. Movement strategies at Stackelberg Equilibrium characterize optimal behavior

in the face of adversarial attacks and enable a defender to activate a limited number

of sensors at any point in time while being able to uniquely identify failure points.

Results obtained on several IEEE test cases show that the optimal configuration

construction coupled with the optimal movement strategy provides the defender the

highest gain in rewards.
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Chapter 9

CONCLUSION

Change is the only constant.

– Heraclitus

Conventional wisdom dictates that a moving system is less predictable and there-

fore, more difficult to attack. This wisdom, however, only holds when movement

is based on careful analysis of existing data and considers strategic behavior by an

adversary. Thus, reasoning about the what, when, and how of movement becomes a

critical aspect of leveraging movement for security. In this concluding chapter, we

discuss three aspects. First, we re-state the goals of our research and discuss how the

works presented in this thesis help achieve them. Second, we reflect on the chosen

methodology and emphasize on the novel questions that arise, highlighting directions

for future work. Finally, we highlight the key takeaways for readers who seek to use

Moving Target Defenses.

9.1 Aims of this Thesis

As stated in the introduction, the thesis has three aims. In this section, we describe

each of them and highlight how the research presented in the thesis achieves them.

First, we noted that conventional Moving Target Defenses (MTDs) consider näıve

movement strategies, leaving open the problem of designing intelligent movement

strategies. We hypothesized that when domain knowledge is available, we can model

these problems as a multi-agent interaction and proposed methods to infer movement
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strategies that improve the effectiveness of MTDs. In Chapter 3 and 4, we showed that

by modeling MTD as a two-person game, leveraging existing domain knowledge and

devising methods to infer strategies at Strong Stackelberg Equilibrium, we can signif-

icantly outperform existing movement strategies. Second, when domain knowledge is

not readily available, but interaction with a system is possible, we asked whether we

can characterize and learn optimal movement strategies. In Chapter 5, we proposed a

unified game-theoretic framework that can characterize optimal movement strategies

for both the web-application security and the cloud network security domains. Then,

we developed a novel variant of multi-agent Reinforcement Learning and showed the

learned movement strategy converges to the optimal movement strategy.

Third, we investigated if the idea of Moving Target Defenses can be readily ap-

plied to novel application domains and, in doing so, can it be more effective than

current defense mechanisms in these settings? In Chapter 6, we married the two

most popular proactive defense mechanisms in cyber-security and proposed a moving

target approach to cyber-deception in software security. We were able to show that

static deception techniques eventually leak information to an attacker about which

vulnerabilities are honey-patches. Using MTD, the attacker is not only kept guess-

ing but upon failure helps the defender to counter-surveil them and gather valuable

information.

In Chapter 7, we consider moving the classification surface of Deep Neural Net-

works which acts as (1) an attack surface for white-box attacks and (2) an exploration

surface for model theft and black-box attacks. The lack of differential immunity be-

comes a hindrance to the success of MTD in this scenario. Yet, with a softer notion

of differential immunity inherently possessed by an ensemble of existing Deep Neural

Networks, we show that the MTDeep acts as an add-on defense-in-depth strategy
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that pushes the robustness of classifiers beyond state-of-the-art on image classifica-

tion tasks. Further, owing to the in-built randomness at classification time, black-box

attacks, created using approaches similar to model theft, becomes less potent.

In Chapter 8, we proposed an MTD for shifting the detection surface responsible

for fingerprinting failures in power networks. By leveraging graph-theoretic modeling

of these networks, we formally defined the problem of finding differentially immune

sensor placements and designed optimization problems to find them. Beyond the

concept of finding a Minimum Discriminating Code Set (MDCS), novel problems

emerged when we considered the notion of differential immunity to other graph-

theoretic solution concepts. We then leveraged our game-theoretic formalism to find

optimal movement strategies in this setting and showed that it provides robustness

to adversarial attacks.

9.2 Reflections and Future Work

The work presented in this thesis considers the use of multi-agent systems in the

context of Moving Target Defense (MTD) for cyber-security followed by the use of

MTD in novel application domains, spanning from cyber-physical system to machine

learning. While we mostly focus on developing a unified multi-agent formalism for

MTD that lets us model properties of the configuration set C and development of

optimal movement strategies M , progress on several fronts is necessary to enable the

effective use of MTD in all the domains presented in the thesis. This section takes

a critical view of these defenses, in places highlighting relevant work and suggesting

future directions.
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Accurate modeling of cyber-interaction

A true cyber-interaction is often not limited to the inherent limitations of various

game-theoretic and graph-theoretic frameworks discussed in the thesis. For example,

the assumption about complete observability may be too strong a threat model in

the context of Chapter 3 and 6. We not only assumed that the attacker is aware

of the vulnerabilities in the code-base, but also considered they know the patches

used and the movement strategy. On the other hand, assuming that the defender can

fully observe an attacker’s movement in Chapter 4 constitutes a weak threat model.

To justify this assumption, we showed in Chapter 5 that consideration of partial

observability makes (1) inference time-consuming and (2) learning sample-inefficient.

Even in single-agent modeling, partial observability makes it difficult for strategy

inference mechanisms to scale beyond 30 nodes [51]. While the use of these models

for improving the effectiveness of MTD is important, trading-off the pragmatism

afforded by a model vs. the scalability of inference (or the sample-complexity of

learning) is an important question.

Development and Maintenance of MTDs

With the complexity of modern cyber-systems, it is often a formidable task to even

design a single software or network that achieves all the user requirements. In this

regard, the requirement of having a set of fully functional system configurations,

necessary for MTD, may seem unreasonable in some contexts. While the ever-evolving

space of attacks is expected to keep all defense systems on their toe, we can categorize

the work presented in this thesis into two buckets based on the relative costs of

deployment and maintenance.
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High Development costs, High Maintenance Costs In Chapter 3, we pre-

sented an approach to improving the effectiveness of MTDs in web-applications. In

this setting, a practitioner has to develop multiple code-bases that support the web-

application logic, deal with movement costs [20], and maintenance issues. While we

try to account for switching costs in Chapter 3, the development of automatic code

translation mechanisms [69] are equally important to facilitate the use of MTD in

these settings. Similarly, in Chapter 8, for the dynamic sensor placement in power

networks, one needs more Power Monitoring Units (PMUs) than what would be used

at any given point in time. This drives up both the development costs and the main-

tenance costs for power networks. Fortunately, the cost of coming up with several

placement points for MTD remains similar to finding a single-placement point for

static placement.

High Development Costs, Low Maintenance Costs In our development of

MTD for IDS system placement discussed in Chapter 4, one incurs high development

costs of setting up a centralized SDN system that can facilitate movement and infer-

ring movement strategies. Once it is deployed, the maintenance costs are relatively

less. A similar line of reasoning exists for our works on moving target cyber-deception

in Chapter 6 and MTDeep in Chapter 7. In the former, one needs significant devel-

opment effort to collect or develop regular and honey-patches that can be used by the

software system. Similarly, in the latter case, training large neural network models

that give high accuracy on the task at hand (and differential immunity) may incur

high development costs. In some cases, the development costs is a question of ongoing

research and thus, substantially large. In comparison, maintenance of these systems,

once developed, is far less.
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By no means is the categorization of works, in this space of development and

maintenance costs, exhaustive. While all the MTDs discussed in our survey [7] can

be situated in this categorization, given the context of this thesis, we simply consider

two regions in this space.

Asymmetric Performance of Different System Configurations

Often, the constituent configurations of an MTD are not equally performant, thereby

resulting in asymmetric performance impacts. In Chapter 3, while we address the

performance impact of switching costs for web-application MTD, we do not let the

quality of service (QoS) metric associated with a single configuration (eg. latency of

response) affect the rewards associated with deploying a particular system. On the

other hand, we encode the QoS metrics in the utilities of our formulated game in

case of dynamic IDS placement in Chapter 4 and moving target patch deployment in

Chapter 6. Further, the rewards returned by the environment lets us encode this im-

pact in the strategy learning scenario discussed in Chapter 5. Although consideration

of the performance impact in the rewards of the formulated game lets us infer or learn

strategies that consider both security and performance impacts, there are other ways

to model QoS costs. In Chapter 7, we separate out the QoS metric (accuracy on the

test data) and the robustness metric (accuracy on adversarially perturbed input) into

two players and then use a parameter to trade-off the importance given to accuracy

vs. robustness, making it a Bayesian normal-form game.

In some MTD scenarios, this concern ceases to exist. For example, in Chapter 8,

we explicitly ensure that the number of PMUs activated in the power system is op-

timal and all of them are capable of uniquely identifying failures in High Voltage
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Transformers (HVTs). Hence, one can expect the power requirements of the con-

stituent MTD configurations to be similar.

Implementing Movement

A static software system is completely oblivious to the engineering effort required for

and the performance impacts of MTDs. Shifting from a particular configuration c to

another c′ can greatly vary depending on the particular MTD under consideration.

In the context of web-applications, we try to explicitly account for this cost when

inferring a movement strategy. In Chapter 5, we expect the environment to execute

a switch action and, depending on the operational metrics observed (encoded as

stochasticity), successfully switch or disregard the movement by falling back to the

existing configuration. In dynamic IDS placement, the availability of a centralized

controller in a Software-Defined Network simplifies movement to a script that shuts

down and brings up multiple intrusion detection processes (across the system). While

we consider emulation cloud scenarios in Chapter 4, we categorize several MTDs in

network security based on the maturity of experiments, ranging from experiments on

simulation environments to industrial test-beds, in our survey [209].

On the other hand, the use of MTD in novel application domains makes it harder

to leverage existing technologies to facilitate movement unless it is trivial. In Chap-

ter 7, MTDeep simply has to reroute input images to constituent classifiers using a

pre-computed movement strategy whereas we had to design an end-to-end system

architecture and dynamic patch-set selection mechanism for moving target cyber-

deception in Chapter 6. On similar lines, for robust sensor activation in power net-

works in Chapter 8, we might need to consider the effort required at the ground level

to activate and deactivate Power Monitoring Units (PMUs).
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Prioritization for Patching Known Vulnerabilities

Given the complexity of current software systems, discovery and patching of existing

vulnerabilities is commonplace. With the large number of vulnerabilities discovered

each year (≈ 9351 on average in the last 8 years 1 ), the hope of fixing all vulnerabilities

at once is a distant dream. Hence, defenders must prioritize the limited effort that

can be devoted to patch vulnerabilities. In Chapter 3 and 4, we show that MTD

systems exacerbate this problem. Not only does the use of multiple configurations

increase the count of known vulnerabilities, the additional knowledge used to model

the multi-agent interaction makes vulnerability prioritization more difficult. While we

suggest brute-force approaches to identify them, the development of better algorithms

is important for the future.

Introduction of Novel Security Concerns

The use of Moving Target Defense opens up a Pandora’s box of novel vulnerabilities.

We will discuss a few of them here.

Attack Surface Expansion While the use of MTD limits an attacker’s success in

terms of determining the configuration of a system at the time of attack, the use of

multiple configurations broadens the overall attack surface and forces the defender to

consider a larger set of vulnerabilities. The larger attack surface, in turn, exacerbates

the problem of routine maintenance such as monitoring exploits and patching existing

vulnerabilities. In the context of multi-stage attacks such as Advanced Persistent

Threats (APTs) discussed in Chapter 4, a stealthy attacker who resides in one of

the nodes may be favored to succeed at times. For example, given a static system,

1Estimate obtained by averaging data gathered form https://www.cvedetails.com.
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the attacker’s position within a cloud network may be of a disadvantage if the nodes

reachable from this vantage point all have vulnerabilities that are beyond the expertise

level of an attacker. In the context of an MTD, the attacker can hope that the

configurations of the accessible systems will eventually change over time making them

vulnerable to an attack in the attacker’s arsenal.

Centralized Implementation Techniques In Chapter 4, MTD techniques neces-

sitate the use of a centralized mechanism such as Software Defined Networking (SDN)

to send instructions to firewalls, hosts, etc. While strong measures can be taken to

ensure that the centralized controller is well protected against adversarial attacks, one

cannot guarantee its security, especially in light of zero-day vulnerabilities, creating a

single point of failure. Hence, some of the technologies that are essential to enable the

use of MTD in real-world scenarios also add to the security challenges of the defender.

9.3 Takeaways

The three key takeaways relate closely to the goals of this thesis. First, considera-

tion of MTD in adversarial environments can greatly improve the security guarantees

provided by existing security mechanisms in several domains. Being a defense-in-

depth solution, MTD can be used in conjunction with the existing defense mechanism.

This guarantees that using MTD can never be worse in terms of security. Second,

when existing knowledge is available about the adversary, the threat model, and the

performance impact of movement, modeling MTD as a game can help in characteriz-

ing and inferring optimal movement strategies that strike a balance between security

and performance. Lastly, when information about system dynamics and the effect

of actions on a system is unknown but interaction with the MTD system is possi-
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ble, one can simply learn the optimal movement strategies by adapting techniques in

Multi-agent Reinforcement Learning.
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through an ensemble of specialists. arXiv:1702.06856, 2017.

[179] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Ad-
versarial example defenses: Ensembles of weak defenses are not strong. arXiv
preprint arXiv:1706.04701, 2017.

[180] George A Adam, Petr Smirnov, Anna Goldenberg, David Duvenaud, and Ben-
jamin Haibe-Kains. Stochastic combinatorial ensembles for defending against
adversarial examples. arXiv:1808.06645, 2018.

[181] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya Nori, and Antonio Criminisi. Measuring neural net robustness with
constraints. In NIPS, 2016.

[182] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao,
Cho-Jui Hsieh, and Luca Daniel. Evaluating the robustness of neural networks:
An extreme value theory approach. arXiv preprint arXiv:1801.10578, 2018.

[183] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[184] Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neural network
for skeleton based action recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1110–1118, 2015.

[185] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Return of the devil in the details: Delving deep into convolutional nets.
arXiv:1405.3531, 2014.

[186] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In ACM international conference on
Multimedia.

[187] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In CVPR, 2015.

235



[188] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv:1409.1556, 2014.

[189] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In CVPR, 2016.

[190] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
Imagenet large scale visual recognition challenge. International Journal of Com-
puter Vision, 115(3):211–252, 2015.

[191] Southwest blackout. https://tinyurl.com/y6xxjsm5. accessed: 2020-06-30.

[192] Vahid Salehi, Ahmed Mohamed, Ali Mazloomzadeh, and Osama A Mohammed.
Laboratory-based smart power system, part ii: Control, monitoring, and pro-
tection. IEEE Transactions on Smart Grid, 3(3):1405–1417, 2012.

[193] Anamitra Pal, Anil Kumar S Vullikanti, and Sekharipuram S Ravi. A pmu
placement scheme considering realistic costs and modern trends in relaying.
IEEE Transactions on Power Systems, 32(1):552–561, 2016.

[194] Kaustav Basu, Malhar Padhee, Sohini Roy, Anamitra Pal, Arunabha Sen,
Matthew Rhodes, and Brian Keel. Health monitoring of critical power sys-
tem equipments using identifying codes. In CRITIS, pages 29–41. Springer,
2018.

[195] Malhar Padhee, Reetam Sen Biswas, Anamitra Pal, Kaustav Basu, and Arun-
abha Sen. Identifying unique power system signatures for determining vul-
nerability of critical power system assets. ACM SIGMETRICS Performance
Evaluation Review, 47(4):8–11, 2020.

[196] Stamatis Karnouskos. Stuxnet worm impact on industrial cyber-physical system
security. In Annual Conference of the IEEE Industrial Electronics Society, 2011.

[197] Symantec Team. Dragonfly: Western energy sector targeted by sophisticated
attack group, 2017.

[198] Sai Pushpak Nandanoori, Soumya Kundu, Seemita Pal, Khushbu Agarwal, and
Sutanay Choudhury. Model-agnostic algorithm for real-time attack identifica-
tion in power grid using koopman modes. Arxiv 2007.11717, 2020.

[199] Luyao Niu and Andrew Clark. A framework for joint attack detection and
control under false data injection. In International Conference on Decision and
Game Theory for Security, pages 352–363. Springer, 2019.

[200] Mark G Karpovsky, Krishnendu Chakrabarty, and Lev B Levitin. On a new
class of codes for identifying vertices in graphs. IEEE Transactions on Infor-
mation Theory, 1998.

236

https://tinyurl.com/y6xxjsm5


[201] Emmanuel Charbit, Irene Charon, Gérard Cohen, and Olivier Hudry. Discrim-
inating codes in bipartite graphs. Electronic Notes in Discrete Mathematics,
26:29–35, 2006.

[202] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John
Thomas. Matpower: Steady-state operations, planning, and analysis tools for
power systems research and education. IEEE Transactions on power systems,
26(1):12–19, 2010.

[203] Deepjyoti Deka, Ross Baldick, and Sriram Vishwanath. Optimal data attacks
on power grids: Leveraging detection & measurement jamming. In 2015 IEEE
International Conference on Smart Grid Communications. IEEE, 2015.

[204] Ruilong Deng, Gaoxi Xiao, Rongxing Lu, Hao Liang, and Athanasios V Vasi-
lakos. False data injection on state estimation in power systems—attacks, im-
pacts, and defense: A survey. IEEE Transactions on Industrial Informatics,
13(2):411–423, 2016.

[205] Song Tan, Debraj De, Wen-Zhan Song, Junjie Yang, and Sajal K Das. Survey
of security advances in smart grid: A data driven approach. IEEE Communi-
cations S&T, 2017.

[206] Brycent Chatfield and Rami J Haddad. Moving target defense intrusion de-
tection system for ipv6 based smart grid advanced metering infrastructure. In
SoutheastCon 2017.

[207] Bradley Potteiger, Feiyang Cai, Abhishek Dubey, Xenofon Koutsoukos, and
Zhenkai Zhang. Security in mixed time and event triggered cyber-physical
systems using moving target defense. In IEEE International Symposium on
Real-Time Distributed Computing. IEEE, 2020.

[208] Kaustav Basu, Sanjana Dey, Subhas Nandy, and Arunabha Sen. Sensor net-
works for structural health monitoring of critical infrastructures using identify-
ing codes. In DRCN. IEEE, 2019.

[209] Sailik Sengupta, Ankur Chowdhary, Abdulhakim Sabur, Adel Alshamrani, Di-
jiang Huang, and Subbarao Kambhampati. A survey of moving target defenses
for network security. IEEE Communications Surveys & Tutorials, 2020.

[210] Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh. Finding
diverse and similar solutions in constraint programming. In AAAI, volume 5,
pages 372–377, 2005.

[211] Zahra Zahedi, Sailik Sengupta, and Subbarao Kambhampati. Why not give
this work to them?’explaining ai-moderated task-allocation outcomes using ne-
gotiation trees. arXiv preprint arXiv:2002.01640, 2020.

[212] Sailik Sengupta, Tathagata Chakraborti, Sarath Sreedharan, Satya Gautam
Vadlamudi, and Subbarao Kambhampati. Radar—a proactive decision support
system for human-in-the-loop planning. In 2017 AAAI Fall Symposium Series,
2017.

237



[213] Sailik Sengupta, Tathagata Chakraborti, and Subbarao Kambhampati. Ma-
radar–a mixed-reality interface for collaborative decision making. ICAPS UISP,
2018.

[214] Sachin Grover, Sailik Sengupta, Tathagata Chakraborti, Aditya Prasad Mishra,
and Subbarao Kambhampati. ipass: A case study of the effectiveness of auto-
mated planning for decision support. 2019.

[215] Sachin Grover, Sailik Sengupta, Tathagata Chakraborti, and Subbarao Kamb-
hampati. Radar—a proactive decision support system for human-in-the-loop
planning. 2020.

[216] Aditya Prasad Mishra, Sailik Sengupta, Sarath Sreedharan, Tathagata
Chakraborti, and Subbarao Kambhampati. Cap: A decision support system
for crew scheduling using automated planning.

[217] Valmeekam Karthik, Sarath Sreedharan, Sailik Sengupta, and Subbarao Kamb-
hampati. Radar-x: An interactive interface pairing contrastive explanations
with revised plan suggestions. In Technical Report (Under Review), 2020.

[218] Alberto Olmo, Sailik Sengupta, and Subbarao Kambhampati. Not all failure
modes are created equal: Training deep neural networks for explicable (mis)
classification. arXiv preprint arXiv:2006.14841, 2020.

[219] Tathagata Chakraborti, Sarath Sreedharan, Sailik Sengupta, TK Satish Ku-
mar, and Subbarao Kambhampati. Compliant conditions for polynomial time
approximation of operator counts. In Ninth Annual Symposium on Combina-
torial Search, 2016.

[220] Sailik Sengupta, He He, Batool Haider, Spandana Gella, and Mona Diab. Nat-
ural language generation with keyword constraints– a hybrid approach using
supervised and reinforcement learning. West-Coast Conference on Natural Lan-
guage Processing, 2019.

[221] Niharika Jain, Alberto Olmo, Sailik Sengupta, Lydia Manikonda, and Subbarao
Kambhampati. Imperfect imaganation: Implications of gans exacerbating bi-
ases on facial data augmentation and snapchat selfie lenses. arXiv preprint
arXiv:2001.09528, 2020.

[222] Thomas B Sheridan and William L Verplank. Human and computer control of
undersea teleoperators. Technical report, 1978.

[223] Raja Parasuraman. Designing automation for human use: empirical studies
and quantitative models. Ergonomics, 2000.

[224] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against ad-
versarial examples. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 135–147, 2017.

238



[225] Nicholas Carlini and David Wagner. Magnet and” efficient defenses against
adversarial attacks” are not robust to adversarial examples. arXiv preprint
arXiv:1711.08478, 2017.

[226] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. arXiv preprint arXiv:1808.05377, 2018.

[227] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint
arXiv:1609.09106, 2016.

[228] Kuan-Chieh Wang, Paul Vicol, James Lucas, Li Gu, Roger Grosse, and Richard
Zemel. Adversarial distillation of bayesian neural network posteriors. arXiv
preprint arXiv:1806.10317, 2018.

[229] Neale Ratzlaff and Li Fuxin. Hypergan: A generative model for diverse, per-
formant neural networks. arXiv preprint arXiv:1901.11058, 2019.

[230] Shixin Tian, Guolei Yang, and Ying Cai. Detecting adversarial examples
through image transformation. In Thirty-Second AAAI Conference on Arti-
ficial Intelligence, 2018.

[231] Eitan Farchi, Onn Shehory, and Guy Barash. Defending via strategic ml selec-
tion. arXiv preprint arXiv:1904.00737, 2019.

[232] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing
robust adversarial examples. arXiv preprint arXiv:1707.07397, 2017.

[233] Chawin Sitawarin, Arjun Nitin Bhagoji, Arsalan Mosenia, Prateek Mittal, and
Mung Chiang. Rogue signs: Deceiving traffic sign recognition with malicious
ads and logos. arXiv preprint arXiv:1801.02780, 2018.

[234] Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alexey
Kurakin, Ian Goodfellow, and Jascha Sohl-Dickstein. Adversarial examples that
fool both computer vision and time-limited humans. In Advances in Neural
Information Processing Systems, pages 3910–3920, 2018.

239



APPENDIX A

OTHER RESEARCH CONTRIBUTIONS

240



Research

Multi-agent

Systems

Adversarial/

Non-cooperative

Thesis

Figure 1.1

Game-theoretic

Trust [63]

Cooperative

Machine knows

Better [211]

Assistance

[212, 213,

214, 215,

216, 217]

Human knows

Better [218]

Miscellaneous

Planning

[219]

NLP

[220]

GANs

[221]

Figure A.1: An overview of the my research contributions.

The thesis comprises of works that model Moving Target Defense as a multi-agent

interaction. By virtue of it being a defense mechanism, the problems we looked at had

an adversarial element. Beyond these scenarios, I have been fortunate enough to col-

laborate on a variety of other problems in multi-agent systems and other topics. An

overview of my research as a graduate student alongside is given in Figure A.1. I situ-

ate the work discussed in my thesis under the multi-agent adversarial/non-cooperative

scenario. In this appendix, I will briefly given an overview of the other contributions.

Game-Theoretic Trust The work closest to the scenarios described in the thesis is

the formulation of human-robot interaction as a game where the human acts as a su-

pervisor and seeks to come up with a probabilistic supervision mechanism that (1) in-

centivizes a worker robot to follow all protocols and (2) reduces supervision costs [63].
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Multi-agent Co-operative Settings

We divide the works using the knowledge asymmetry between an AI-agent and a

human-in-the-loop. In the spectrum of machine knows more (than the human) and

human knows more (than the machine), we situate our work on developing decision

support assistance.

Machine Knows More Task-allocation is an important problem in multi-agent

systems. It becomes more challenging when the team-members are humans with

imperfect knowledge about their teammates’ costs and the overall performance metric.

While distributed task-allocation methods lets the team-members engage in iterative

dialog to reach a consensus, the process can take a considerable amount of time

and communication. On the other hand, a centralized method that simply outputs

an allocation may result in discontented human team-members who, due to their

imperfect knowledge and limited computation capabilities, perceive the allocation to

be unfair. To address these challenges, in [211], we proposed a centralized Artificial

Intelligence Task Allocation (AITA) that simulated a negotiation and produced a

negotiation-aware task allocation that was fair. If a disgruntled team-member was

unhappy with the proposed allocation, we allowed them to question the proposed

allocation using a counterfactual. By using parts of the simulated negotiation, we

were able to provide contrastive explanations that providing minimum information

about other’s cost to refute their foil.

Human Knows More Deep Neural Networks are often brittle on image classifi-

cation tasks and known to misclassify inputs. While these misclassifications may be

inevitable, all failure modes cannot be considered equal. Certain misclassifications
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(eg. classifying the image of a dog to an airplane) can perplex humans and result

in the loss of human trust in the system. Even worse, these errors (eg. a person

misclassified as a primate) can have odious societal impacts. Thus, in in [218], we

tried to reduce inexplicable errors. First, we proposed methods to obtain the class-

level semantics that captures the human’s expectation (Mh) regarding which classes

are semantically close vs. ones that are far away. Second, we proposed the use of

Weighted Loss Functions (WLFs) to penalize misclassifications by the weight of their

inexplicability. Finally, we showed that training (or even fine-tuning) existing clas-

sifiers with the two proposed methods lead to Deep Neural Networks that have (1)

comparable top-1 accuracy, an important metric in operational contexts, (2) more

explicable failure modes, (3) higher robustness to random and adversarial noise and

(4) incur significantly less cost in gathering of additional human labels compared to

existing works.

Assistance Proactive Decision Support (PDS) aims at improving the decision mak-

ing experience of human decision makers by enhancing both the quality of the de-

cisions and the ease of making them. In [20], we considered the role of automated

decision making technologies in the deliberative process of the human decision maker.

Specifically, we focused on expert humans in the loop who shared a detailed, if not

complete, model of the domain with the assistant, but may still be unable to compute

plans due to cognitive overload. To this end, we proposed a PDS framework RADAR.

By leveraging technologies in the automated planning community, RADAR aided the

human decision maker in constructing plans, validating and correcting them, suggest-

ing completions, and explaining its suggestions, etc. We engineered the capabilities

of such a system based on good design principles laid out in the literature on human-

computer interaction; we leveraged the levels of automation defined in [222], and the
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stages of automation [223]. In [214], via human subject studies, we showed that the

time taken to make plans drastically reduced and the satisfaction improves when hu-

mans use the capabilities of our decision support system. In this setting, we enabled

RADAR to provide explanations when the human is not aware of certain domain

rules. When such explanations seemed unreasonable and the human, the longitu-

dinal interaction was be leveraged to correct RADAR’s own model of the world or

elicit human’s hidden preferences [217]. Thus, the work on assistance falls between

the two scenarios described above. Given the human is to be held responsible for the

final plan, an asymmetry exists, making this more of decision support as opposed to

human-AI teaming. We adapt our notion of decision support to support teams that

have individuals with varied capabilities [213] and task-scheduling problems [216].

Miscellaneous

These works can be divided into three branches. In planning, I worked on develop-

ing a computationally simpler version of the operator-count heuristic for a particular

class of planning domains [219]. In Natural Language Processing, I formalized the

problem of sentence generation from keywords and built end-to-end neural models

that, trained using supervised and reinforcement learning methods, were able to out-

perform sampling based methods [220]. Finally, I tried to understanding the propa-

gation of biases in synthetic data generation using Generative Adversarial Networks

(GANs). In [221], we showed that mode-collapse inhibits the capability of GANs to

not merely propagate biases in existing data, but exacerbate them. Our recent results

show that addressing the mode-collapse issue using state-of-the-art mechanisms fail

to address the challenge along certain embargoed features. A similar phenomenon of

exacerbating societal biases is also observed in the context of conditional GANs.
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In this chapter, we first describe the Open-AI style game-simulator interface that

can be used by the learning agents in Chapter 5. We then briefly describe how

some of the simulator functionalities are provided for the domains and discuss future

directions.

1 def get_states ():

2 . . .

3 return []

4 """

5 @Input

6 None

7 @Output

8 Returns a list (essentially a set) consisting of states in the game

.

9 """

10

11 def get_start_state ():

12 . . .

13 return s

14 """

15 @Input

16 None

17 @Output

18 A start state s ∈ start S ⊆ S denoting the start state for an episode.

19 """

20

21 def get_actions ():

22 . . .

23 (return [[ [], [], . . . ], []])

24 """

25 @Input
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26 None

27 @Output

28 A list with the first element representing attacker actions and the

second element representing defender actions. The first list can

be further decomposed in to set of lists representing actions

for each attacker/follower type.

29 """

30

31 def is_end(s):

32 . . .

33 return True/False

34 """

35 @Input

36 A state s ∈ S.

37 @Output

38 AssertionError if s 6∈ S.

39 True if the input state s ∈ end S ⊆ S

40 False otherwise

41 """

42

43 def act(s, aD, aA, θ):

44 . . .

45 return RD, RA, st+1

46 """

47 @Input

48 A state s ∈ S, defender ’s action aD, attacker/follower ’s action aA,

the attacker type θ

49 @Output

50 AssertionError if s 6∈ S, aD (or aA) is not a defender (or attacker

type θ’s) action.

51 RD -- Defender ’s utility
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52 RA -- Attacker ’s utility

53 st+1 -- Next state

54 """

Moving Target Defense for Web-applications

As mentioned earlier, we borrow the game domain from [20] to build the simulator.

In the context of the simulator functions, the get state method returns four states

of the system. Each state of the defender constitutes choosing an implementation

language (Php or python) and a database technology (SQL or PostgreSQL) that can

be used to host the web-application.

The get start state method of the game simulator returns on of the four states

at random, implying the system can start in any one of the four configurations. We

allow a user to override the global variable that describes the set of start states

because, in the context of certain baseline strategies such as BSG formulation [20],

they consider only a sub-set of the MTD configurations. Thus, a strategy that places

zero probability of switching to a configuration can new start or find itself in the

configuration.

The get actions method returns the set of actions available to the attacker types

and the defender. Similar to the original game designed in [20], we pair up an attacker

type expertise level with a set of technologies it has expertise in to the Common

Vulnerabilities and Exploits (CVEs) mined from the NVD database to define their

attack set. For the defender, the four configurations it can choose constitute the

attack set.
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The is end always returns False in this setting as the game has not terminal state

and the goal of the defender is to continuously keep moving the system. While we can

stop when policy converges for our propose BSS-Q algorithm, for the other algorithm,

owing to the lack of convergence guarantees, we run it for a predefined number of

episodes.

The act method considers the action of the defender and the attacker’s actions

to determine the impact. Ideally, this can be done by deploying the system on a

new configuration and then sending out an actual request to the web-service with the

attack folder as part of a request. Then, depending on the return, decide if the attack

was successful or not. While we seek to generate a class of attacks that can represent

the 300+ CVEs used in the domain, this was out of scope for this work. Further, the

attack success or failure might only give a binary indication of the rewards fro the

attacker, which constitutes a sparse signal and treats impactful and trivial attacks

under the same umbrella. To address this, we leverage the Common Vulnerability

Scoring Service (CVSS) and use the Impact score as the attacker type reward if the

chosen attack is expected to work on the defense configuration being deployed. We

use the current state of the system and the defender action to compute the cost of

the movement. Ideally, we want to determine this by running a system with multiple

virtual machines– one hosting the current configuration and the other bringing up

the next configuration (determined by aD). The time taken in bringing up the new

configuration and then the amount of packets dropped or the extra resources used

in the switching should all be part of the switching costs. While one can come up

with an elaborate procedure to do so, this is beyond the present scope of our paper

and we consider the costs calculated based on configuration-based similarity [20]–

configurations that are more dissimilar incur higher switching costs.
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Moving Target Defense for Placement of Intrusion Detection Systems in

Cloud Networks

Before describing the design of the simulator, we provide the underlying cloud net-

work, scenario, derived from the modeling in Section 4.2, in Figure B.1. This scenario,

via two transformation steps– first, to an attack graphs and then to a Markov Game–

can be used to build our game simulator. For details of this process, we refer the

reader to look at Chapter 4.

The get start state method of the game simulator returns the single start state

that represents the case where an attacker has user access to the LDAP server on the

public facing interface of the network system.

The get actions returns the set of attack actions, discovered using vulnerability

scanners on the cloud system and a part of the attack graph representation in [42], that

are possible for an attacker to execute in a given state of the cloud network system.

The action set for the defender indicates the set of Intrusion Detection Systems they

can place and a no-op action implying that they may not choose to place an IDS

system at all.

The is end returns a single state of the BSMG. This state represents the condition

where the attacker has administrator access on the file server.

The act method considers the action of the defender and the attacker’s actions

to determine if the attack action is detected. Ideally, we want to play the defender’s

strategy of placing IDS system and then execute the attack action chosen by the at-

tacker. While this needs an entire cloud network setup with Virtual Machines (VMs),

we use similar resources used in [42] to determine the utilities and the transition. If

the IDS placed is able to detect the exploit, we return a reward proportional to the

250



Figure B.1: A cloud system highlighting its network structure, the attacker and

defender (admin) agents, the possible attacks and monitoring mechanisms.

effort required by the attacker in executing the attack action. This, similar to [42], is

determined using the exploitability score of the CVE determined from the Common

Vulnerability Scoring System (CVSS). If the IDS systems fails to detect the attack,

then the attacker has an impact proportional to the base score obtained from CVSS

which considers both the impact and the complexity of the attack vector. Further,

the game transitions into a new state where the attacker has either escalated privi-

leges on the same VM (or physical server) or gets access to a new VM on the cloud.

The defender besides the impact score, which represents the security impact, consid-

ers the impact on network bandwidth if they deploy a Network Intrusion Detection

System (NIDS) and impact on memory or CPU resources if they deploy a Host-based

Intrusion Detection System (HIDS). We use the scaling used in [42] to come up with

a single utility value for the defender.

251



APPENDIX C

OBTAINING DIFFERENTIAL IMMUNITY IN DEEP NEURAL NETWORKS

252



I will discuss three promising directions that can result in the development of

differential immune networks– (1) carefully engineering (learnable and hyper) pa-

rameters of the neural networks, (2) modification of the input feature space and (3)

analysis of the different attacks.

Engineering Neural Network Parameters

While our work in Chapter 7 tries to leverage the use of different architectures in

in the hope of obtaining high differential immunity it is by no means a method that

ensures it. In the hope of guaranteeing differential immunity, one can explore several

directions to modify the parameters of neural networks; broadly, such modifications

can be categorized into two types– (1) to tune the hyper-parameters of a network (eg.

number of hidden layers, types of these layers, non-linear activation functions, etc.),

and (2) the learnable parameters (weights and biases) of the network. In this section,

we will discuss related work and promising avenues of research under these headings.

Engineering Hyper-parameters There exists work by [180] that considers the

approach of modifying neural network architecture to design differentially immune

networks. Their idea builds on top of MagNET [224], and our work MTDeep [17].

In MagNET, the authors use auto-encoders (AE) to both detect and reform ad-

versarial inputs. The key assumption is that adversarial inputs are far away from

benign test inputs in the data-manifold. Thus, reconstructions using AE, helps to

discard malicious inputs with egregious perturbations (reconstruction error > thresh-

old) and refine those with sufficiently small perturbations (reconstruction error <

threshold but, malicious inputs are automatically mapped to the data manifold via

reconstruction). While Carlini demonstrates that such a defense can be broken [225],

the way it is used in [180] is slightly different. In [180], the authors consider placing
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a Variational Auto-Encoder (VAE) before every layer of a network. Thus, detection

and reform are performed on the transformed inputs of every layer.

If a network has n − 1 convolutional layers followed by a fully connected layer,

then there are n locations where a VAE can be added. Thus, a defender can switch

between these 2n networks at run-time (referred to as the pure-strategies/MTD con-

figuration space in the MTDeep setting). They empirically demonstrate that dif-

ferentially immunity exists between the various configurations and then provide jus-

tification as to why it exists. In LeNet, a 3-layer network architecture for classi-

fying MNIST data, the different networks (called LeNet-VAE) can be denoted as

{(0, 0, 0), (1, 0, 0), (0, 1, 0), . . . , (1, 1, 1)} where 1 indicates that a VAE is used before

a particular layer. For example, the configuration (1, 0, 0) indicates that VAE is only

placed before the first convolutional layer to transform the input (but not before the

second convolutional layer and the final fully-connected layer). They are able to show

that attacks crafted for (1, 1, 1), the strongest defense that detects and reforms exam-

ples before inputting them to any layer, do not transfer to single LeNet-VAE variants

like (0, 1, 0) or (0, 0, 1).

It should seem counter-intuitive that attacks which can fool (1, 1, 1) are not effec-

tive against (0, 1, 0). The authors claim that, in the context of norm-based attacks

that use gradient information, the gradients used to fool (1, 1, 1) are orthogonal to

the gradient required to fool (0, 1, 0). To substantiate this claim, the authors com-

pare the last layer’s gradients of the various neural nets w.r.t. the input features.

They show that the cosine distance similarity between gradients of the various net-

works is a strong predictor of the transferability of attacks. For example, the cosine

distance similarity between the last layer gradients of (1, 1, 1) and (0, 1, 0) is small

and thus, attack transferability is less, leading to greater differential immunity. To
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strengthen this claim, the authors show that training an ensemble of eight networks

to have orthogonal input-output Jacobians, compared to parallel input-output Jaco-

bians, results in greater differential immunity (although such training may incur a

loss in accuracy against benign test samples). Note that in [180], the authors first

come up with the use of certain architectural modifications and discover that the

different configurations have small cosine distance similarity between the last layer

gradients, which in turn helps them develop differentially immune networks. Future

works can use this insight to invent architectural modifications of neural networks to

ensure differential immunity while limiting the accuracy loss against benign example.

On a slightly different note, there have been works on automatically discovering

neural network architecture such as neural architecture search [226]. While these

works have mostly been interested in guaranteeing high classification accuracy, chang-

ing their objectives to consider robustness to adversarially perturbed inputs can be a

promising, albeit resource-intensive, direction. In the context of neural architecture

search, actions and heuristics inspired from the findings of [180] (eg. different permu-

tation of VAE placement before layers of a neural network can result in orthogonal

gradients, and thus, higher differential immunity) can result in the discovery of an in-

cumbent set of configurations with a predefined differential immunity (and minimum

performance accuracy). Another interesting set of actions is the consideration of vari-

ous non-linear activation functions for designing differentially immune configurations.

An obvious downside to such a method is the time involved in obtaining this set.

Engineering weights and biases In this regard, works have considered methods

to generate weights of a specified network [227, 228, 229]. Of special interest, is the

work on HyperGANs [229]; the authors try to generate use-and-throw weights for

a neural network using GANs while trying to ensure diversity, i.e. prevent mode-
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collapse so that the GAN does not land up generating similar weights every time.

To do so, they consider an intermediate noise vector that (1) has correlation across

various dimensions that helps in generating parameters for a highly accurate neural

network and (2) is similar to high entropy noise thereby preventing mode-collapse

and ensuring diversity in the space of generated weights.

This method provides a computationally efficient way of generating tons of net-

works and picking a set of weights (or network configurations) that guarantee differen-

tial immunity. In this regard, the authors show that adversarial examples devised for

one set of weights (i.e. with a white-box threat model) can only fool 50− 70% of the

generated networks, but never all of them. Thus, this can greatly help in designing

an ensemble with high differential immunity in the context of MTDeep.

Modification of the Input Feature Space In this case, one can consider ran-

domly modifying the input features at test time (before inputting them to a network).

Thus, the configuration of the MTDeep ensemble differs based on the input as opposed

to the network (learnable or hyper) parameters.

In [230], the authors show that transformations such as rotation (clockwise or

anti-clockwise) are extremely effective in negating the effect of adversarial noise while

preserving the classification accuracy on benign examples. For example, a benign test

image of a zero is classified to zero whether it is rotated or not whereas an adversarial

example is correctly classified after transformation. Unfortunately, if an adversary

is aware of the transformation technique in place, i.e. a white-box setting, strong

attacks like the Carlini-Wagner attack designed in [171] can fool the network. On the

other hand, when the authors consider a randomized rotation angle decided at test

time before inputting the image to the network, they see an increase in robustness to

adversarial attacks. This goes to say that white-box attacks designed for a predefined
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rotation angle do not transfer to networks that use other rotation angles. Thus,

investigation of various image transformation techniques can be a promising direction

to generate differentially immune configurations.

Beyond popular transformation functions, one can consider partitioning tech-

niques to carefully divide the input space. If the input feature space is denoted

as F , one can consider the partition {F1, F2, . . . , Fn} such that F1∪F2∪ · · ·∪Fn = F

and ∀ i, j Fi ∩ Fj = ∅. For example, consider n = 2 and F1 as the set of all pixels

in the odd rows of an input image (and thus, F2 the set of all pixels in the even

rows). In such a setting, if we limit norm-based perturbations to be of a reasonable

size, then two networks with F1 and F2 can produce differentially immune networks

because white-box attacks on Fi cannot fool Fj when i 6= j and the bound on the

adversarial noise removes attacks that can perturb pixels in both the sets F1 and F2

from being considered a valid attack. The latter is not a strong assumption because

detection methods can often be used to reliably detect and discard such examples.

Some works build on top of MTDeep in this regard; in [231] the authors consider a

simple problem with four input features and come up with a predefined partitioning

strategy. By using a mixed Nash equilibrium strategy for randomization at test-time

(an idea similar to MTDeep [17]), they are able to show the efficacy of their method

against one-feature perturbation attacks.

Beyond simple partition methods, more intelligent techniques can be considered

to balance the loss in accuracy of benign inputs while beginning effective against

adversarial examples. For example, consider the use of using the gradient information

of the network w.r.t. the input features (i.e. δL
δx

as opposed to δL
δθ

) to allocate features

to the partitions sets. Each network, trained on the disjoint partitions, can then be

strategically chosen at run-time, similar to MTDeep, for classifying an input image.
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Analysing various attack types

Majority of the work in regards to the development of attacks and defenses in the

context of Deep Neural Networks considers norm-based perturbations, i.e. strategic

crafting and addition of noise to a benign image such that the malicious image is (1)

within a norm-bound of the original image and (2) able to make the classifier mis-

classify it. The first restriction is often imposed to ensure that a human can correctly

classify the image. Beyond these, there exists a realm of work on generating adversar-

ial examples that are more practical; for example, robust 3D adversarial patches that

when put on any object can fool the classifier regardless of noise due to camera angles,

lighting conditions, etc. [232], the addition of stickers to traffic signs that seem in-

consequential to a human but make the classifier behave incorrectly [233], adversarial

examples that make a classifier and a (time-limited) human misclassify [234] etc.

Adversarial training, i.e. re-training the network with adversarial examples gen-

erated using a particular attack can often make the network immune to that attacks.

I believe that adversarial training with all types of attack images (norm-based, adv.

patches, etc.) will negatively impact classification accuracy (for example, a particular

attack type, eg. attacks that increase the brightness of the image are in direct conflict

with other attacks eg. attacks that darken the image or increase its contrast). Thus,

it will be worth investigating if adversarially trained networks on one attack type are

still prone to adversarial inputs crafted using other attack types. If they are, one

case considers an ensemble of classifiers where each classifier is adversarially trained

against one attack type. This will guarantee differential immunity because a defender

has at least one configuration that is robust to every attack– the one adversarially

trained on that attack.
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