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Abstract
Deep Neural Networks are known to be prone
to incomprehensible mistakes on the inputs they
do misclassify. However, from the perspective
of an end-to-end system built on top of a clas-
sifier, there may be additional layers of decision
making that may actually be immune to particu-
lar kinds of misclassification. For example, if a
drone ends up misclassifying a yellow school bus
as something similar, such as a cab instead of,
say, an enemy tank, then the underlying decision
problem of ignoring this object as a possible tar-
get remains the same, and hence unaffected. In
this brief abstract, we discuss this notion of ro-
bustness called “bounded misclassification” that
is domain-specific and operational, and is specif-
ically predicated on the overall functionalities of
a particular application.

1. Introduction
Although Deep Neural Networks (DNNs) are the state-of-
the-art in classification tasks, they are known to make mis-
takes that are curiously quite incomprehensible to human
intuitions. Recent work has shown that the problem is
worse than accidental misclassification – DNNs are eas-
ily fooled with carefully crafted modifications to the in-
put (Szegedy et al., 2013) which may be imperceptible to
humans (Moosavi-Dezfooli et al., 2016; Papernot et al.,
2016a) or may be actual objects in the world (Athalye et al.,
2017). If used for safety critical systems such as classify-
ing digits on a bank cheque or recognition of objects on the
road from camera feed of an automated car, the decisions
based on these results can be catastrophic. For example,
classifying ‘1’ as ‘9’ can lead to an adversary withdrawing
$900 instead of the original $100 mentioned on the cheque
or misclassifying a ‘Labrador retriever’ walking on the road
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Figure 1. An ATM machine that decides now much money to pay
based on the recognition of handwritten numbers on a cheque by
a classifier. In this work, we talk about taking secure decisions as
opposed to making a classification systems robust.

walking as a ‘beer bottle’ might lead to different decisions
based on which the autonomous car might not stop.

Although the research community has made progress on
the development of defense mechanisms against such at-
tacks, the security of a classifier is still measured in terms
of misclassification rate on a set of test samples. This met-
ric is often misleading to the operational security of a clas-
sifier, which can be interpreted as the degree of misclassifi-
cation (measured as a domain-specific “semantic distance”
between the various class labels) as opposed to the mis-
classification rate. In that sense, this aims to secure classi-
fiers in a way such that the effect of the misclassification at
the classification level does not adversely affect the meta-
classification at the decision level. The autonomous agent
can thus be seen to have a two layer architecture as seen in
Figure 1 – the first layer representing the classification sys-
tem and the second layer representing the decision system
that chooses how to act based on the output of the classi-
fication system. Existing works seek to address security
issues at the classification level only.

In this paper, we thus posit that when viewed from the sys-
tem perspective, the failure of deep networks towards ad-
versarial inputs may not be as big an issue if the system as
a whole is designed so that (1) the decision making mod-
ules are cognizant of the misclassification risks; and (2) the
classification modules are trained with the understanding
that (1) is in place, for example, by using semantic dis-
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tances between labels. This has two implications from the
perspective of system design – (1) when the application
is consumed at the user end at the level of images, then
adversaries will need to devise attacks that are more eas-
ily detectable (by having to cross semantic boundaries) to
the human eye; and (2) at the decision level, as mentioned
before, the system behavior / performance remains largely
unaffected. The aim of this paper is thus to –

• make a case for the use of degree of misclassifica-
tion as a metric which can be used to redefine the
notion operational security of an autonomous agent
taking decisions based on the output of deep networks.

• explore distance measures between the various output
labels that represent the degree of misclassification
obtained by leveraging domain level semantics.

• investigate the applicability of cost-based loss func-
tions for the purposes of operational security so that
on misclassification, for legitimate or adversarial in-
puts, labels the input as a class semantically closer to
the correct class label as opposed to an arbitrary class.

When a network is trained on data from a particular distri-
bution, some areas in the higher dimensional space end up
with high biases. If the distribution of the test data is differ-
ent (i.e. noise, random or adversarial), the network misclas-
sifies in these vast swathes of unexplored spaces with high
bias. Adversarial attacks exploit this weakness. Adversar-
ial training thus seeks to employ examples with adversarial
noise in the training phase itself so that the classifier re-
duces bias in these uninformed regions of the high dimen-
sional space. In that sense, our method could be seen as a
form of adversarial training that handles “noise” in general
by allowing the decision boundaries to be more expansive
and hopefully contiguous to those of “similar” classes.

2. Bounded Misclassification
Consider a dataset with n features and m labels. A labeled
data is represented as {(x1, . . . xn), y} where xi is the ith

feature and y ∈ Y = {Y1, . . . , Ym} is the correct class
label. We define a similarity measure between two class
labels as a function f : Y × Y → [0, 1] –

s(Yi, Yj) =

{
x if i 6= j
1 otherwise

Iδ(a) =
{

1 if a ≥ δ
0 otherwise

s(Yi, Yj) is close to 1 if classes Yi and Yj are similar, i.e.
the decision taken by the high level system remains unaf-
fected whether the classifier outputs Yi or Yj . For exam-
ple, if our decision function decides to ‘stop’ if it sees a
Y1 =‘dog’ or a Y2 =‘cat’ and ‘move forward’ if it sees a

Figure 2. A sub-graph from WordNET (Miller & Fellbaum, 1998)

Figure 3. An example graph G constructed from MNIST labels.

Y3 =‘beer bottle’, then s(Y1, Y2) > s(Y1, Y3), s(Y2, Y3).
The distances between the classes are symmetric and are
represented as an m×m matrix D where Dij = d(Yi, Yj).

Bounded misclassification with bound δ requires that a
given input ~x with correct class label y is classified as Yi
only if s(Yi, y) ≥ δ. When δ = 1, the classifier does not
have any guidance for similar labels to fall back on. Ideally,
if δ is closer to 1, we expect that an adversary would have
to make a perturbation of high magnitude in order to force
the classifier to classify the perturbed image to a desired
class which is less similar to the correct class label.

2.1. Distance between Class Labels

One can, of course, ask how one can obtain these distances
between class labels. A possible approach would be, given
the decision context in which this classification result will
be used, to crowdsource additional batches of labeling (for
simple tasks like is ’dog’ similar to a ’cat’ if you were to de-
cide whether you would stop your car or run them over) or,
in the worst case, ask the domain experts for more complex
tasks. This can prove to be too expensive and unscalable.

Fortunately, we note that in many cases, and certainly for
taking decisions based on classification on ImageNET kind
of data, these distances are semantic and hence inherent in
nature. Thus, the distance metrics can be extracted out of
existing ontologies or knowledge bases (e.g. WordNET)
that pertain to that specific domain. In the following we
discuss this caveat in the context of two popular datasets
used often as testbeds for classification tasks.

IMAGENET

ImageNET is a popular image database built out of many
everyday objects as class labels, which belong to the well-
known lexical database WordNET (Miller & Fellbaum,
1998). Words in WordNET form a hierarchical graph struc-
ture – the nodes of this network represent English words
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(not necessarily nouns) and the edges represent conceptual-
semantics and lexical-relations between the nodes.

An example of such a network is given in Figure 2. Notice
that in this network, all breeds of dogs are situated under
the label ‘dog’, which in turn is under the label ‘animals’
that is also the parent of ‘cat’. The NLTK API for Word-
NET measures path similartiy(u, v) for words u and v
that is equal to 0 if there is no similarity and 1 if u = v.
Thus, in the case of ImageNET, we easily use the Word-
NET graph and use this similarity measure for the class
labels Y1 and Y2. For example, a ‘golden retriever’ is more
similar to a ’Labrador retiever’ (0.333) than a ‘cat’ (0.111),
which in turn is more similar than a ‘beer bottle’ (0.0625).

MNIST

Now we consider a particular scenario for the classification
of MNIST dataset used in the context of classifying hand-
written digits on a bank cheque. We construct an underly-
ing graph for the labels of this dataset (see Figure 3) and
define the following similarity measure over class labels –

s(Y1, Y2) = 1− shortest path(Y1, Y2)

maxY1,Y2 shortest path(Y1, Y2)

= 1− shortest path(Y1, Y2)

shortest path(Y1 = 0, Y2 = 9)

= 1− shortest path(Y1, Y2)

8
(1)

Consider each handwritten digit in the amount value on the
cheque is being parsed independently by the computer vi-
sion system (essentially a DNN classifier). Say an adver-
sary had put some extra pen dots on some of the digits,
that could be ignored by a human cashier, but makes the
DNN classifier classify it incorrectly. Since we want the
system to make a misclassification (if it is going to misclas-
sify anyway) nearer to the actual label, it is better to classify
the image of ‘1’ and a ‘2’ rather than a ‘9’, thus incurring
less loss of money to the bank in the case of fraud. By
the similarity measure, we have s(1, 2) = 0.875 whereas,
s(1, 9) = 0.125. It is interesting to note that, from a visual
perspective, ‘1’ looks somewhat closer to ‘7’, where as ‘6’
looks closer to ‘8’. In the graph we construct, this kind of
a similarity is not considered because of the decisions we
plan to take based on the classification output.

2.2. Weighted Loss Functions (WLF)

We will derive inspiration from Weighted Loss Functions
(WLFs) used for cost-based misclassification in the ma-
chine learning literature (Duda et al., 1973; Pazzani et al.,
1994) to penalize the loss incurred in classifying an input
with class label Yi to a Yj by a weight λYi,Yj

. Classi-
fiers in general use the 0 − 1 loss functions for the sake
of maximizing accuracy. Thus, we have λYi,Yi = 1 and

λYi,Yk
= 0 ∀ k ∈ {1, . . . ,m} \ i.

2.3. Using WLF for Bounded Misclassification

The main idea here is to nudge a misclassification towards
a label that is more similar (with respect to the semantics
of the underlying decision task) to the correct class can be
done using non-uniform weighted loss functions. The pro-
posed approach thus focuses on well-defined semantics for
weighting the loss functions as opposed to the notion of
merely using soft labels as is the case with generic defen-
sive distillation (Papernot et al., 2016b).

Thus, if a sample with true label Yi is classified to Yj , the
value of λYi,Yj

should be higher as s(Yi, Yj) approaches
one (i.e. is more similar). Also, since we want to ensure
misclassification is bounded to classes at a similarity of ≤
δ, we will ensure that λYi,Yj when s(Yi, Yj) < δ.

We now discuss how we can modify the most commonly
used loss function known as the cross entropy (log) loss
function for Deep Neural Networks (DNNs) to a non-
uniform weighted loss function. Let j represent the label
indices and oj represents the probability value (of the soft-
max layer) that the neural network outputs for the class la-
bel Yj given input x. We propose the following loss –

L(x) = −
m∑
j=1

Iδ(s(Yk, Yj)) log oj

where k is the correct class label and the function Iδ(a) = 1
if a ≥ δ and 0 otherwise. Notice that apart from the non-
zero term that the traditional cross-entropy function has
(at Yk), this equation has other non-zero terms for similar
classes, specifically when j 6= k and s(Yk, Yj) < δ. The
network will try to increase the value of oj in proportion to
the similarity between the classes. For dissimilar classes,
Iδ(·) = 0 so that the loss function value is not affected.
Thus, the classifier can let oj = 0 for these classes.

3. Preliminary Results
We now present some preliminary results on whether mis-
classification error can be diffused across neighboring class
labels for the purposes of operational security. Figure 4
shows the confusion matrices for classification of digits on
MNIST. Here the y-axis contains the true labels (0-9) while
the x-axis contains the predicted label – the strength of the
red color of cell (i,j) indicates the frequency with which the
digit iwas recognized in place of j. We trained the network
in the following three conditions –
C1 We used the usual cross entropy (log) loss function.

Notice that the frequency of misclassification is quite
spread out. Also, visual similarities, especially in the
case of handwritten digits, result in high frequencies
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Figure 4. Distribution of mislabeled classes in MNIST in the three training conditions C1, C2 and C3. As expected, in C2 and C3,
instances of misclassification huddle around the diagonal (prediction = target) while the classification accuracy takes a hit.

Figure 5. Performance in presence of random / adversarial noise.

for ‘3’ being mistaken as ‘7’ and ‘6’ as ‘0’.
C2 We trained the DNN with the non-uniform weighted

loss function (Section 2.3) using the similarity func-
tion (precomputed) in Eqn. 1 induced by the semantic
graph in Figure 3. In this case, the frequency of
classifying a digit in class Yi decreases as one moves
away for the diagonal since the similarity between
the labels decrease. Further as the bound is increased
(δ = 0.3, 0.6, 0.8) the spread of misclassified samples
gets more concentrated along the diagonal, but the
accuracy also takes a marginal hit.

C3 We performed the training in two batches – in Batch 1,
we changed the true labels of an input from a one-hot
encoding to a two/three-hot encoding by letting the
(immediate) neighboring classes also be a correct la-
bel. Thus, for an image in class Y1, the one-hot encod-
ing [0, 1, 0, 0 . . . , 0] became [1, 1, 1, 0 . . . , 0]. In Batch
2, we used the usual one-hot encodings to retrain the
network. In this case, we notice that the accuracy of
classification to the single correct class reduces sig-
nificantly but the misclassification to non-neighboring
classes is significantly reduced as well.

Next, we investigate the performance of the networks when
exposed to either random or adversarial noise in Figure 5.

For random noise, WLFs are able to provide bounds on
misclassification (see distribution of red pixels on the left
column of Figure 5), but are unable to compete at the level
of the vanilla network with respect to the classification ac-
curacy to the correct class (40.77% vs. 17.5%) . This is
a zeroth order methods and clearly requires further work
to make sure that bounded misclassification is achieved on
top of and not in place of accuracy.

In case of adversarial examples, although WLF seems to
have a slightly better accuracy (13.79%) than the vanilla
network (1.79%), both the networks have low accuracy (see
the second column of Figure 5) to even say the WLF pro-
vides an effective defense. Interestingly, the one trained
with WLF seems to have developed a curious cluster of
misclassified labels on ‘3’ and ‘8’ which is, for many
classes, not even within the bound defined in the similarity
function. At this time, we do not have a good explanation
why this happens.

More intriguingly, after we add more noise to the adversar-
ial images, the accuracy bumps up a little for the vanilla
network and takes a hit for the network using the weighted
loss function. Given that the accuracy values are less, it
is hard to make claims about weather adding more white
noise can be effective is nullifying some of the threat due
to adversarial noise. While results are not conclusive, we
are presently working on developing a better understanding
of the properties of WLFs on DNNs and developing effec-
tive approaches to trade off misclassification costs.

3.1. Work in Progress

We are currently in the process of developing decision sys-
tems that can demonstrably show immunity towards mis-
classified labels based on this notion of operational secu-
rity. We feel that the notion of operational security can be
effective for classification in open-world scenarios. Say the
classification system get the picture of a kangaroo as input
at test time for the first time, i.e. there is no class label kan-
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garoo and no such images in the training set, could there be
ways of (mis)classifying it to a more meaningful class (like
human, rabbit etc.) as opposed to less meaningful class
(like glass, bottle etc.) so that the decision of the system
built on top of the classification system remains the same?

In fact, such considerations are not new in the literature on
planning for robotics where higher level decision making
needs to be connected to lower level motor controls (Sri-
vastava et al., 2014) and thus must be aware of the confi-
dence of perception. Works on Hierarchical Task Networks
(HTNs) (Erol et al., 1994) and “nogoods” backtracking
(Kambhampati, 1998) in decision making algorithms may
prove to be invaluable resources for developing techniques
for bootstrapping classification algorithms with such risk-
aware decision modules. This is also, of course, contingent
on developing, as we discussed in the section on prelimi-
nary results, more effective methods of bounded misclassi-
fication that is able to preserve accuracy while at the same
time provide operational security. We hope to report on the
latest findings at the workshop.
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