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Good Vs Bad Classification

• Ideally we want to penalize misclassification to certain classes less 
than others.
• [0th order idea] Can borrow for works on cost-based misclassification.

• We could not find any work that used cost-based or weighted loss functions 
for classifying noisy input examples for neural networks.

• Given a classification task at hand we have to have a notion of 
distance/similarity between a pair of class labels.
• Penalize less when classifier misclassifies to a similar class since decision 

taken remains the same.



Class similarity values

ImageNET
• Subgraph of the WordNET, from which nouns were 

used as the class labels of ImageNET.
• Path similarity between WordNET words.

S(GR, LR) = 0.333
S(GR, Cat) = 0.111
S(GR, Beer Bottle) = 0.00625

0 1 2 3 5 9876

MNIST
• For any classification problem, we need an 

underlying graph using which we can compute the 
similarity.

• For an ATM detecting digits on a hand written 
cheque, if a digit, say 2, is adversarially perturbed, it 
is better to classify it as 1 or 3 instead of 9. 



Cost-Based loss function for DNNs

• Use weighted loss 
functions to penalize 
misclassification to 
dissimilar classes more.

• Define class similarity 
matrix (of size 𝐶 × 𝐶) given 
a classification task at hand.



Vanilla cross entropy 
network

• Network 
misclassifications 
reflect similarity in 
structures of 
numbers. Eg. 7 
misclassified as a 2.

Weighted cross entropy networks with various bounds
• As we increase the bound, more images are misclassified 

near the correct class instead of any arbitrary class.
• Accuracy takes a hit as the loss function says that 

misclassification to closer classes in not a very bad thing to 
do.

• We have come up with scaled similarity metrics to address 
the later for now.

Batch Training
• Initial epochs- correct 

label is n-hot vector. 
All n classes that are 
within similarity 
bound is given label 1.

• Then training with 
one-hot labels.
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Discussion

• We investigate the use of cost-based/weighted loss functions 
for Deep Neural Networks with a goal to improve accuracy of 
decision making based on classification systems.

• Can we use similar techniques for designing an open-world 
classifier?
• Say picture of a kangaroo, which the DNN has never seen before, is 

given as input (Si Liu’s talk in the morning).
• Based on features it can detect in the squirrel, it classifies it as (say) a 

cat and not any random class, like a leaf or bear bottle.

Read out paper at: https://goo.gl/jFdTsy
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