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Supervised Machine Learning Systems for 
Classification
• Given i.i.d. labelled training data 𝑖, 𝑙 ~𝐷 learn a classifier that 

estimates Pr 𝑙𝑗 𝑖 , where 𝑙𝑗 ∈ 𝐿 where 𝐿 is the set of class labels for 
the input data 𝑖.

• The classifier guarantees classification accuracy about inputs 𝑖 drawn 
from the same distribution 𝐷.
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Attacks on Deep Neural Networks

• Classifier misclassifies (i.e. increases misclassification rate), human 
observer cannot detect the noise.
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Attacking Deep Neural Networks
(for image classification)
• The input space is huge.  For a 
28 × 28 image with RGB 
channels, the input space is 
28 × 28 × 255 3.

• The input distribution for 
classification is small.

• Classifier has high bias for 
regions not seen in the input.

• Exploit this bias to generate 
adversarial samples.

Picture courtesy: Peter Norvig



Attacks on Deep Neural Networks

• Whitebox attacks – attack for each image, each network
• FGSM Szegedy et al., 2013, DeepFool Moosavi et al., 2016a, JSMA Papernot et al., 2016a etc.
• Find features (in an image) that have the most effect on the Loss Function of the classifier. Use 

these as heuristics to manipulate input.
• Find out decision boundaries, find perturbation vectors that push it over to the other side.

• Blackbox attacks – attack for each image, each network
• Train a small substitute DNN using distillation.  Design a whitebox attack on this small network.  

Attack generalizes to blackbox Papernot et al., 2017b

• Black box attacks without substitute models are also possible Chen et al., 2017

• Universal Perturbation – attack (mostly WB) for a single network
• Create a noise image that added to any image will make the classifier misclassify it Moosavi et al., 2016b

• Adversarial Patch – A universal perturbation at a particular place in the image Brown et al., 2017

• Bad Nets – Backdoor patch introduced by poising a portion of the training data Gu et al., 2017



Defense Against Attacks on Deep Neural 
Networks
• Train the neural net on the attack distribution (with the correct 

labels) and the classifier becomes immune to the particular type of 
adversarial inputs. This is one of the most effective methods!
• Ensemble adversarial training Tramer et al., 2017, Stability training Zheng et al., 2016

• Shown to be ineffective against Adv. Universal Perturbation Moosavi et al., 2016b

• Other defense mechanisms like defensive distillation Papernot et al., 2016c, 
anti-whitening and dimensionality reduction Bhagoji et al., 2017

• Effectiveness is shown against some sets of attack algorithms.
• These mechanisms are often shown to be ineffective against new 

computationally expensive attacks Carlini and Wagner, 2017



Defense and Meta-Defense Against Attacks 
on Deep Neural Networks

• How about a defense mechanisms that

• Can provide a first line of 
defense against attacks 
previously unseen.



Defense and Meta-Defense Against Attacks 
on Deep Neural Networks

• How about a defense mechanisms that

• Can increase the security 
with currently available 
technology for defense.

• Can provide a first line of 
defense against attacks 
previously unseen.



Moving Target Defense

• Cybersecurity uses MTD as a mechanism to ensure that an attack 
by an attacker is not always successful since the surface being 
defended in not static.



Moving Target Defense in Practice



Moving Target Defense for Deep Neural 
Networks (MTDeep)
• Let us say we have 3 DNNs (say 
𝑁1, 𝑁2, 𝑁3) and an attacker designs 
an noise 𝜖1 for the 𝑁1 (and an input 
image 𝑥).

• Let us say the attacker gives 𝑥 + 𝜖
as input for classification.  If the 
input is given to the 𝑁2 or 𝑁3 and 
the attacker’s input is classified 
correctly, the attack becomes 
ineffective.
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Moving Target Defense for Deep Neural 
Networks (MTDeep)
• Differential immunity (𝛿)

All configurations should not be 
vulnerable to the same attack.

• We define a metric that can give 
the value of differential 
immunity for an ensemble of 
networks.

0 ≤ 𝛿 ≤ 1
No differential 
immunity

No differential 
immunity



Challenges for MTDeep

• Is absolute differential immunity, 
i.e. 𝛿 = 1 possible for neural 
networks?
• Difficult because the set of input 

features that are important for 
classification remains the same.

• Attack algorithms use these features 
as the heuristics to construct 
perturbations.

• Can we still get security benefits by 
using MTD?
• If you switch between configuration 

strategically, even with small δ we can 
have security gains.



Goal of MTDeep

Threat model

• Attacker knows the different configurations in the system.  Has the 
power to design strong whitebox attacks (which are inherently more 
effective than blackbox attacks) for each system.

• Over time the attacker is able to infer the switching policy of MTDeep.

Expectations

• Reduce the misclassification rate on adversarially perturbed inputs.

• Maintain the classification accuracy on legitimate input samples.



FGSM attack for 𝑁1 FGSM attack for 𝑁2

𝑁1 20 80 40 60

𝑁2 45 55 10 90

Modelling MTDeep as a Game

Constant sum game between the classification 
system MTDeep and the attacker who is trying 
to fool MTDeep.

Let Ԧ𝑥 denote the strategy vector over the 
defender’s actions.

Ԧ𝑥 = 𝑥1, 𝑥2 = 0.3,0.7
where 𝑥𝑖 = Pr(using 𝑁𝑖)
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repeated game gives the optimal switching strategy!

 Reduce misclassification rate on adversarial inputs.
Maintain classification accuracy of the present system.
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Modelling MTDeep as a Game

FGSM attack for 𝑁1 FGSM attack for 𝑁2

𝑁1 20 80 40 60

𝑁2 45 55 10 90

Constant sum game between the classification 
system MTDeep and the attacker who is trying 
to fool MTDeep.

Let Ԧ𝑥 denote the strategy vector over the 
defender’s actions.

Ԧ𝑥 = 𝑥1, 𝑥2
where 𝑥𝑖 = Pr(using 𝑁𝑖)

Add a new user type who has only one action – to provide 
legitimate test image.

Stackelberg equilibrium now solves the multi-objective 
function.  Increases defender’s utility, which
 Reduce misclassification rate on adversarial inputs.
 Increases classification accuracy on legitimate samples.

Legitimate User 
Input

96 96

97 97



Optimal Switching Strategy

• We use the DOBSS formulation P. Paruchuri et al., 2008 for calculating the 
Stackelberg Equilibrium of our game.  The multi-objective function 
we optimize for the classification system MTDeep is,

Weightage of attacker
Weightage of legitimate user

MTDeep’s strategy

Attacker’s strategy

User’s strategy (trivial)



Evaluations

• We use the DOBSS formulation P. Paruchuri et al., 2008 for calculating the 
Stackelberg Equilibrium of our game.  The multi-objective function 
we optimize for the classification system MTDeep is,

• We consider two different datasets – ImageNET and MNIST.
• Evaluate against known whitebox attacks, universal perturbations.

Weightage of attacker
Weightage of legitimate user

MTDeep’s strategy

Attacker’s strategy

User’s strategy (trivial)



Universal Perturbation Attack against 
MTDeep for ImageNET



Universal Perturbation Attack against 
MTDeep for ImageNET

When 𝛼 = 1,

Ԧ𝑥 = (0, 0.171, 0.241, 0, 0.401, 0.187)

• In the generated strategy, not all 
configurations are used. Eg. VGG-F and 
VGG-16 are dropped from the ensemble.

• MTDeep as the first line of defense
• No proven defense against Universal 

Perturbation.
• Provides double the accuracy when 

classifying only adversarial inputs!



FGSM against MTDeep for MNIST

Note that the Stackelberg equilibrium guarantees double 
the accuracy even against MTD system using a Uniform 
Random Strategy (MTD-URS) in the worst case!



Stronger Attacks against MTDeep + 
Adversarially Trained Nets on MNIST

Note that after adversarial training, the 
attacks are almost equally ineffective 
against the adversarially trained nets.



Stronger Attacks against MTDeep + 
Adversarially Trained Nets on MNIST

New attacks, stronger than FGSM can 
render the defense mechanism 
(adversarial training on FGSM) useless.

Carlini-Wagner attacker 
based on the L2 norm.



Stronger Attacks against MTDeep + 
Adversarially Trained Nets on MNIST

• MTDeep on top of an existing defense 
mechanism gives an additional 4% increase 
in accuracy when 𝛼 = 1.
• Defense mechanism in place already 

gives 82% accuracy on adv. inputs.

• Trivial strategies lead to detrimental effects.
• CNN gives higher accuracy than the 

MTD(URS) system. 



Conclusions and Future Work

• We proposed an MTD framework for securing DNNs - MTDeep.
• We use Moving Target Defense for an ensemble of Deep Neural Networks.

• We formulated the interaction between the classification system and the 
users as a Repeated Bayesian Game.

• We empirically demonstrate the effectiveness of MTDeep on MNIST 
and ImageNET datasets against a variety of well-known attacks.



[New results] What if you do blackbox attacks 
against MTDeep? 
• Blackbox attacks, are weaker than whitebox attacks for constituent DNNs.

 In our case, the blackbox attack has to learn the actual the prediction of 
the ensemble and the randomization implicitly built into MTD.

 The game theory framework cannot model these attacks as they are 
not-existent during the first deployment of the system.

• Blackbox attacks are weaker (65% misclassification) vs whitebox attacks 
(70% misclassification) against MTDeep.


